精英家教网 > 高中数学 > 题目详情
7.如图,空间四边形OABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,点M在OA上,且$\overrightarrow{OM}$=$\frac{2}{3}$$\overrightarrow{OA}$,点N为BC中点,则$\overrightarrow{MN}$等于(  )
A.$\frac{1}{2}\vec a-\frac{2}{3}\vec b+\frac{1}{2}\vec c$B.$-\frac{2}{3}\vec a+\frac{1}{2}\vec b+\frac{1}{2}\vec c$C.$\frac{1}{2}\vec a+\frac{1}{2}\vec b-\frac{1}{2}\vec c$D.$\frac{2}{3}\vec a+\frac{2}{3}\vec b-\frac{1}{2}\vec c$

分析 $\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}$=$\frac{1}{3}\overrightarrow{OA}+\overrightarrow{OB}-\overrightarrow{OA}+\frac{1}{2}\overrightarrow{BC}$=$-\frac{2}{3}\overrightarrow{OA}+\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}-\frac{1}{2}\overrightarrow{OB}$=$-\frac{2}{3}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}$.

解答 解:$\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}$=$\frac{1}{3}\overrightarrow{OA}+\overrightarrow{OB}-\overrightarrow{OA}+\frac{1}{2}\overrightarrow{BC}$=$-\frac{2}{3}\overrightarrow{OA}+\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}-\frac{1}{2}\overrightarrow{OB}$=$-\frac{2}{3}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}$;
又$\overrightarrow{{O}{A}}=\vec a$,$\overrightarrow{{O}{B}}=\vec b$,$\overrightarrow{{O}C}=\vec c$,
∴$\overrightarrow{MN}=-\frac{2}{3}\vec a+\frac{1}{2}\vec b+\frac{1}{2}\vec c$.
故选B.

点评 本题考查了向量加法的几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知平行四边形ABCD中,AB=2,AD=1,∠DAB=60°,点E,F分别在线段BC,DC上运动,设$\overrightarrow{BE}=λ\overrightarrow{BC},\overrightarrow{DF}=\frac{1}{9λ}\overrightarrow{DC}$,则$\overrightarrow{AE}•\overrightarrow{AF}$的最小值是$\frac{22}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题错误的个数(  )
①“在三角形ABC中,若sinA>sinB,则A>B”的逆命题是真命题;
②命题p:x≠2或y≠3,命题q:x+y≠5,则p是q的必要不充分条件;
③命题“若a2+b2=0,则a,b都是0”的否命题是“若a2+b2≠0,则a,b都不是0”.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线x2-$\frac{{y}^{2}}{3}$=1的一条渐近线与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{a}^{2}-4}$=1相交与点P,若|OP|=2,则椭圆离心率为(  )
A.$\sqrt{3}$-1B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数y=sin2x+cos2x的图象向右平移$\frac{π}{4}$个单位后,所得图象对应的解析式是(  )
A.y=cos2x+sin2xB.y=sin2x-cos2xC.y=cos2x-sin2xD.y=cosxsinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且$\sqrt{3}$a=2csinA
(1)确定角C的大小;
(2)若c=$\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.m为何值时,方程mx2-(2m+1)x+m=0有两个不相等的实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=lg$\frac{1+x}{1-x}$(其中x≠±1)是(  )函数.
A.B.C.既奇又偶D.非奇非偶

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将一颗骰子投掷两次得到的点数分别为a,b,则函数f(x)=ax3+bx2+x存在极值的概率为(  )
A.$\frac{1}{2}$B.$\frac{5}{9}$C.$\frac{7}{12}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案