精英家教网 > 高中数学 > 题目详情

对一切实数x,令[x]为不大于x的最大整数,则函数f(x)=[x]称为高斯函数或取整函数.若,n∈N*,Sn为数列{an}的前n项和,则S3n________

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=Cn0x2n-1-Cn1x2n+Cn1x2n+1-…+Cnr(-1)rx2n-1+r+…+Cnnx3n-1,其中n(n∈N+).
(1)求函数f(x)的极大值和极小值;
(2)设函数f(x)取得极大值时x=an,令bn=2-3an,Sn=b1b2+b2b3+…+bnbn+1,若p≤Sn<q对一切n∈N+恒成立,求实数p和q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(1+x)-x
(1)求f(x)的单调区间;
(2)记f(x)在区间[0,π](n∈N*)上的最小值为bx令an=ln(1+n)-bx
(i)如果对一切n,不等式
an
an+2
-
c
an+2
恒成立,求实数c的取值范围;
(ii)求证:
a1
a2
+
a1a3
a2a4
+…+
a1a3a2n-1
a2a4…a 2n
2an+1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{a}是递增数列,前n项和为Sn,且a1,a2,a5成等比数列,S5=a32
(1)求通项an
(2)令bn=
1
2
(
an+1
an
+
an
an+1
)
,设Tn=b1+b2+…+bn-n,若M>Tn>m对一切正整数n恒成立,求实数M、m的取值范围;
(3)试构造一个函数g(x),使f(n)=a1g(1)+a2g(2)+…+ang(n)<
1
3
(n∈N+)
恒成立,且对任意的m∈(
1
4
1
3
)
,均存在正整数N,使得当n>N时,f(n)>m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,n≥2令an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.
(3)对于给定的实数a(a>1)是否存在这样的数列{an},使得f(an)=log3(
3
an+1)
,且a1=
1
a-1
?若存在,求出a满足的条件;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案