精英家教网 > 高中数学 > 题目详情
如图:直线y=x与抛物线y=x2-4交于A、B两点,直线l与直线y=x和y=-5分别交于M、Q,且=0,=
(1)求点Q的坐标;
(2)当点P为抛物线上且位于线段AB下方(含点A、B)的动点时,求△OPQ面积的最大值。
解:(1)联立
解得
即A(-4,-2),B(8,4)

∴QM⊥AB

∴M是AB的中点,即M(2,1)
∴l是线段AB的垂直平分线
又kAB=
∴l的方程为y-1=-2(x-2),
即2x+y-5=0,令y=-5,得x=5,
∴Q=(5,-5)。
(2)直线OQ的方程为:x+y=0
由题意可设P,-4≤x≤8,且O、P、Q不共线
则点P到直线OQ的距离为:



其中x∈[-4,8],且O、P、Q不共线,
令f(x)=(x+4)2-48,
则当x∈[-4,8]时,函数f(x)单调递增
又当x=-4时,|x2+8x-32|=48,
当x=8时,|x2+8x-32|=96
∴当x=8时,(S△QPOmax=×96=30。
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年福建省厦门二中高二(上)数学限时训练(10)(文科)(解析版) 题型:解答题

如图,直线y=x与抛物线y=x2-4交于A、B两点,线段AB的垂直平分线与直线y=-5交于Q点.
(1)求点Q的坐标;
(2)当P为抛物线上位于线段AB下方(含A、B)的动点时,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年上海市虹口区北郊高级中学高三(上)摸底数学试卷(解析版) 题型:解答题

如图,直线y=x与抛物线y=x2-4交于A、B两点,线段AB的垂直平分线与直线y=-5交于Q点.
(1)求点Q的坐标;
(2)当P为抛物线上位于线段AB下方(含A、B)的动点时,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年安徽省芜湖一中高二(上)数学寒假作业(必修2)(解析版) 题型:解答题

如图,直线y=x与抛物线y=x2-4交于A、B两点,线段AB的垂直平分线与直线y=-5交于Q点.
(1)求点Q的坐标;
(2)当P为抛物线上位于线段AB下方(含A、B)的动点时,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2004年上海市高考数学试卷(文科)(解析版) 题型:解答题

如图,直线y=x与抛物线y=x2-4交于A、B两点,线段AB的垂直平分线与直线y=-5交于Q点.
(1)求点Q的坐标;
(2)当P为抛物线上位于线段AB下方(含A、B)的动点时,求△OPQ面积的最大值.

查看答案和解析>>

同步练习册答案