精英家教网 > 高中数学 > 题目详情
9.若函数f(x)=x2-a|x-1|在[0,+∞)上单调递增,则实数a的取值范围是[-2,0].

分析 f(x)=x2+a|x-1|=$\left\{\begin{array}{l}{{x}^{2}+ax-a,x≥1}\\{{x}^{2}-ax+a,x<1}\end{array}\right.$,结合题意可得函数y=x2+ax-a在[1,+∞)单调递增,y=x2-ax+a在[0,1)单调递增,故有 $\left\{\begin{array}{l}{-\frac{a}{2}≤1}\\{\frac{a}{2}≤0}\\{1-a+a≤1+a-a}\end{array}\right.$,由此求得实数a的取值范围.

解答 解:∵f(x)=x2+a|x-1|=$\left\{\begin{array}{l}{{x}^{2}+ax-a,x≥1}\\{{x}^{2}-ax+a,x<1}\end{array}\right.$,
∴要使f(x)在[0,+∞)上单调递增,需函数y=x2+ax-a在[1,+∞)单调递增,
且y=x2-ax+a在[0,1)单调递增,故有 $\left\{\begin{array}{l}{-\frac{a}{2}≤1}\\{\frac{a}{2}≤0}\\{1-a+a≤1+a-a}\end{array}\right.$,
求得-2≤a≤0,∴实数a的取值范围是[-2,0],
故答案为:[-2,0].

点评 本题主要考查含绝对值函数的单调性,二次函数的单调性及单调区间,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sin(3x+$\frac{π}{4}$).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的单调增区间;
(Ⅲ)当x∈[-$\frac{π}{6}$,$\frac{π}{6}$]时,求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.网上有一项虚似的游戏,在如图所示的等腰直角三角形上有15个格点(横、纵相邻格点间的距离为1个单位),三角形边界上的每个格点记1分,三角形内部的每个格点记2分,若点击鼠标左键,屏幕上会随机等可能地显示点中的某一格点,点中某格点后,将与其距离为1个单位的格点的分数和作为其得分.
(1)某人点击鼠标左键,若第一次显示点中三角形内部的格点,第二次显示点中三角形边界上的格点,求恰好两次点中的格点间的距离为1个单位的概率;
(2)随即点击鼠标左键一次,其得分记为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=$\sqrt{lo{g}_{\frac{1}{2}}({2}^{x}-1)}$的定义域是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.集合M={x|lg(1-x)<0},集合N={x|x2≤1},则M∩N=(  )
A.(0,1)B.[0,1)C.[-1,1]D.[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.规定:f″(x)=(f′(x))′,例如,f(x)=x2,f′(x)=2x,f″(x)=2,设g(x)=lnx,函数h(x)=mg″(x)+g′(x)一$\frac{π}{3}$,下列结论正确的是(  )
A.当m∈$(\frac{2}{3},+∞)$时,函数h(x)无零点
B.当m∈$(-∞,\frac{2}{3})$时,函数h(x)恰有一个零点
C.当m∈$[0,\frac{2}{3}]$时,函数h(x)恰有两个零点
D.当m∈$(-\frac{2}{3},\frac{2}{3})$时,函数h(x)恰有三个零点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|y=lg$\sqrt{4-x}$,B={x|23x-1>2x},C={x|log0.7(2x)<log0.7(x-1)},求A∩B,B∪C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数f(x)=sin(2x+θ)(-$\frac{π}{2}$<θ<$\frac{π}{2}$)的图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,$\frac{\sqrt{3}}{2}$),则φ的值可以是(  )
A.$\frac{5π}{3}$B.$\frac{5π}{6}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)是定义在R上的奇函数,当x≥0时  f(x)=2x-x2,则f(-1)=-1;若函数g(x)=f(x)+k-1有三个零点,则k的取值范围(0,2).

查看答案和解析>>

同步练习册答案