精英家教网 > 高中数学 > 题目详情
4.在三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD,AB=BD=CD=1,则该三棱锥外接球的表面积为3π.

分析 由题意,三棱锥A-BCD扩充为长方体,其对角线长为$\sqrt{1+1+1}$=$\sqrt{3}$,可得三棱锥外接球的半径为$\frac{\sqrt{3}}{2}$,即可求出三棱锥外接球的表面积.

解答 解:由题意,三棱锥A-BCD扩充为长方体,其对角线长为$\sqrt{1+1+1}$=$\sqrt{3}$,
∴三棱锥外接球的半径为$\frac{\sqrt{3}}{2}$,
∴三棱锥外接球的表面积为4π•$(\frac{\sqrt{3}}{2})^{2}$=3π.
故答案为:3π.

点评 本题考查三棱锥外接球的表面积,三棱锥A-BCD扩充为长方体,求出三棱锥外接球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.△ABC中,角A,B,C的对分别为a,b,c,且a(1+cosC)+c(1+cosA)=3b.
(1)求证:a,b,c成等差数列;
(2)求cosB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若奇函数f(x)是定义在(-1,1)上的奇函数,且在[0,1)上递增,解关于a的不等式:f(a-2)+f(a2-4)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知F是抛物线y2=4x的焦点,点A,B在该抛物线上且位于x轴的两侧,OA⊥OB(其中O为坐标原点),则△AOB与△AOF面积之和的最小值是(  )
A.16B.8$\sqrt{3}$C.8$\sqrt{5}$D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若角α的终边落在x轴的上方,且-4≤α≤4,则角α的取值集合为[-4,-π)∪(0,π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过点M(0,0),且平行于向量$\overrightarrow{a}$=(1,2)的直线方程是(  )
A.x-2y=0B.x+2y=0C.2x+y=0D.2x-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过点P(3,4)作圆(x-1)2+y2=1的切线,切点为A,B,则直线AB的方程为2x+4y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.α.β为锐角,且sinα=$\frac{4}{7}\sqrt{3}$,tan(α+β)=-$\frac{5}{11}\sqrt{3}$.则β=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法中正确的是(  )
A.向量$\overrightarrow{a}$与非零向量$\overrightarrow{b}$共线,$\overrightarrow{b}$与$\overrightarrow{c}$共线,则$\overrightarrow{a}$与$\overrightarrow{c}$共线
B.任意两个相等向量不一定是共线向量
C.任意两个共线向量相等
D.若向量$\overrightarrow{a}$与$\overrightarrow{b}$共线,则$\overrightarrow{a}$=λ$\overrightarrow{b}$(λ>0)

查看答案和解析>>

同步练习册答案