精英家教网 > 高中数学 > 题目详情
(2008•宣武区一模)已知函数f(x)=x3+ax2-x+2,(a∈R)
(1)若f(x)在(0,1)上是减函数,求a的最大值;
(2)若f(x)的单调递减区间是(-
13
,1)
,求函数y=f(x)图象过点(1,1)的切线与两坐标轴围成图形的面积.
分析:(1)先求导函数,则问题等价于f′(x)在(0,1)上恒有f′(x)≤0,从而问题得解;
(2)利用f(x)的单调递减区间可知f′(x)=3x2+2ax-1=0的两个根为 -
1
3
和1,从而可求函数的解析式;由于(1,1)可能是切点,也有可能不是切点故进行分类讨论求切线方程,进而求面积.
解答:解:(1)f′(x)=3x2+2ax-1,由题意可知,f′(x)在(0,1)上恒有f′(x)≤0,则f′(0)≤0且f′(1)≤0,得a≤-1,所以a的最大值为-1 ….(5分)
(2)∵f(x)的单调递减区间是(-
1
3
,1)
,∴f′(x)=3x2+2ax-1=0的两个根为 -
1
3
和1,
可求得a=-1,∴f(x)=x3-x2-x+2,
①若(1,1)不是切点,则设切线的切点为(x0,y0),(x0≠1),则有
y0-1
x0-1
=3
x
2
0
-2x0-1
y0=3x02-2x0-1,解得x0=1(舍),x0=0,∴y0=2,k=-1
②若(1,1)是切点,则k=f′(1)=0
综上,切线方程为y=1,x+y-2=0∴这两条切线方程与两坐标轴围成的图形为直角梯形
它的面积S=
1
2
(1+2)=
3
2
…..(13分)
点评:本题利用导数研究函数的单调性,解题的关键是理解并掌握函数的导数的符号与函数的单调性的关系,此类题一般有两类题型,一类是利用导数符号得出单调性,一类是由单调性得出导数的符号.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•宣武区一模)已知向量
a
=(x,y),
b
=(-1,2 ),且
a
+
b
=(1,3),则|
a
|等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宣武区一模)编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个人的编号与座位号一致的做法是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宣武区一模)如图,三棱锥P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB
(1)求证:AB⊥平面PCB;
(2)求异面直线AP与BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宣武区一模)在等差数列{an}中,已知a1=
13
a2+a5=4,an=3,则n
=
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宣武区一模)设等比数列{an}的首项为a1,公比为q,则“a1<0且0<q<1”是“对于任意n∈N*都有an+1>an”的 (  )

查看答案和解析>>

同步练习册答案