精英家教网 > 高中数学 > 题目详情
若数列{an}和它的前n项和Sn满足Sn=2an-1(n∈N*),则S4=
15
15
分析:利用当n≥2时,an=Sn-Sn-1,可得Sn+1=2(Sn-1+1),可知:数列{Sn+1}是以a1+1=2为首项,2为公比的等比数列.再利用等比数列的通项公式即可得出.
解答:解:当n=1时,a1=S1=2a1-1,解得a1=1.
当n≥2时,Sn=2(Sn-Sn-1)-1,化为Sn+1=2(Sn-1+1),
∴数列{Sn+1}是以a1+1=2为首项,2为公比的等比数列.
Sn+1=2×2n-1,化为Sn=2n-1
S4=24-1=15.
故答案为15.
点评:熟练掌握“当n≥2时,an=Sn-Sn-1”的关系应用、等比数列的通项公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为(0,+∞),且对任意的正实数x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0.
(1)求f(
1
2
)
的值,试判断y=f(x)在(0,+∞)上的单调性,并加以证明;
(2)一个各项均为正数的数列{an},它的前n项和是Sn,若a1=3,且f(Sn)=f(an)+f(an+1)-1(n≥2,n∈N*),求数列{an}的通项公式;
(3)在(2)的条件下,是否存在实数M,使2na1a2an≥M•
2n+3
•(2a1-1)•(2a2-1)…(2an-1)
对于一切正整数n均成立?若存在,求出M的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为(0,+∞),且对任意的正实数x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0.
(1)求f(
12
)
的值,试判断y=f(x)在(0,+∞)上的单调性,并加以证明;
(2)一个各项均为正数的数列{an},它的前n项和是Sn,若a1=3,且对任意的正整数n,均满足f(Sn)=f(an)+f(an+1)-1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知由正数组成的数列{an},它的前n项和为Sn
(Ⅰ)若数列{an}满足:an+1=qan(q≠0),试判断数列{Sn}是等比数列还是等差数列?并说明理由.
(Ⅱ)若数列{an}满足:a1=
1
2
,且Sn
1
an
的等比中项为n(n∈N*),求
lim
n→∞
Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•越秀区模拟)已知{an}是公差不为0的等差数列,它的前9项和S9=90,且a2,a4,a8成等比数列.
(1)求数列{an}的通项公式;
(2)若数列{an}和{bn}满足等式:an=
b1
3
+
b2
32
+
b3
33
+…+
bn
3n
(n为正整数),求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案