精英家教网 > 高中数学 > 题目详情
我们学过平面向量(二维向量)),空间向量(三位向量),二维、三维向量的坐标表示及其运算可以推广到n(n≥3)维向量.n维向量可用 (x1,x2,x3,x4,…,xn)表示.设=(a1,a2,a3,a4,…,an),设=(b1,b2,b3,b4,…,bn),a与b夹角θ的余弦值为.当两个n维向量,=(1,1,1,…,1),=(-1,-1,1,1,…,1)时,cosθ=( )
A.
B.
C.
D.
【答案】分析:利用题中对向量运算的推广;利用向量的数量积公式求出两个向量的数量积;利用向量模的坐标公式求出两个向量的模;利用向量的数量积公式表示出夹角余弦,求出夹角.
解答:解:由题意对运算的推广得



故选D
点评:本题考查向量的数量积公式、考查向量模的公式、考查利用向量的数量积公式求向量夹角、考查新定义的题型关键是理解透新定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

我们学过平面向量(二维向量)),空间向量(三位向量),二维、三维向量的坐标表示及其运算可以推广到n(n≥3)维向量.n维向量可用 (x1,x2,x3,x4,…,xn)表示.设
a
=(a1,a2,a3,a4,…,an),设
b
=(b1,b2,b3,b4,…,bn),a与b夹角θ的余弦值为cosθ=
a1b1+a2b2+…+anbn
a
2
1
+
a
2
2
+…+
a
2
n
b
2
1
+
b
2
2
+…+
b
2
n
.当两个n维向量,
a
=(1,1,1,…,1),
b
=(-1,-1,1,1,…,1)时,cosθ=(  )
A、
n-1
n
B、
n-2
n
C、
n-3
n
D、
n-4
n

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

我们学过平面向量(二维向量)),空间向量(三位向量),二维、三维向量的坐标表示及其运算可以推广到n(n≥3)维向量.n维向量可用 (x1,x2,x3,x4,…,xn)表示.设数学公式=(a1,a2,a3,a4,…,an),设数学公式=(b1,b2,b3,b4,…,bn),a与b夹角θ的余弦值为数学公式.当两个n维向量,数学公式=(1,1,1,…,1),数学公式=(-1,-1,1,1,…,1)时,cosθ=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:蚌埠二模 题型:单选题

我们学过平面向量(二维向量)),空间向量(三位向量),二维、三维向量的坐标表示及其运算可以推广到n(n≥3)维向量.n维向量可用 (x1,x2,x3,x4,…,xn)表示.设
a
=(a1,a2,a3,a4,…,an),设
b
=(b1,b2,b3,b4,…,bn),a与b夹角θ的余弦值为cosθ=
a1b1+a2b2+…+anbn
a21
+
a22
+…+
a2n
b21
+
b22
+…+
b2n
.当两个n维向量,
a
=(1,1,1,…,1),
b
=(-1,-1,1,1,…,1)时,cosθ=(  )
A.
n-1
n
B.
n-2
n
C.
n-3
n
D.
n-4
n

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市西湖高级中学高二(下)5月月考数学试卷(选修2-2、2-3)(解析版) 题型:选择题

我们学过平面向量(二维向量)),空间向量(三位向量),二维、三维向量的坐标表示及其运算可以推广到n(n≥3)维向量.n维向量可用 (x1,x2,x3,x4,…,xn)表示.设=(a1,a2,a3,a4,…,an),设=(b1,b2,b3,b4,…,bn),a与b夹角θ的余弦值为.当两个n维向量,=(1,1,1,…,1),=(-1,-1,1,1,…,1)时,cosθ=( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案