精英家教网 > 高中数学 > 题目详情
已知函数存在两个极值点x1,x2,且x1<x2
(1)求证:函数f(x)的导函数f′(x)在(-2,0)上是单调函数;
(2)设A(x1,f(x1)),B(x2,f(x2)),若直线AB的斜率不小于-2,求实数a的取值范围.
【答案】分析:(1)先对函数f(x)进行求导,根据原函数有两个极值点可求出a的范围,再对函数f'(x)求导得到f''(x)后判断其符号可得到导函数f′(x)在(-2,0)上的单调性.
(2)表示出直线AB的斜率,将(1)中结果代入可解出a的范围.
解答:(1)∵函数存在两个极值点x1,x2,且x1<x2
∴f'(x)=x2+ax+a,△=a2-4a>0,∴a>4或a<0,且x1+x2=-a,x1x2=a
∴f''(x)=2x+a∴x∈(-2,0)时,f''(x)=2x+a∈(-4+a,a)
若a>4时,f''(x)>0,f′(x)在(-2,0)上是单调增函数
若a<0时,f''(x)<0,f′(x)在(-2,0)上是单调减函数
得证.
(2)直线AB的斜率==
=(x22+x12+x1x2)+=+≥-2
∵x1+x2=-a,x1x2=a
≥-2∴-2≤a≤6
点评:本题主要考查函数的单调性与其导函数的正负的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年湖南省三校高三上学期联考理科数学试卷(解析版) 题型:填空题

已知函数的两个极值点分别为,且,点表示的平面区域为,若函数的图象上存在区域内的点,则实数的取值范围为               .

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年河北衡水中学高三上学期第五次调研考试文科数学试卷(解析版) 题型:选择题

已知函数的两个极值点分别为,且,点表示的平面区域为,若函数的图像上存在区域内的点,则实数的取值范围是(  )

A.           B.       C.     D.

 

查看答案和解析>>

科目:高中数学 来源:2014届云南师大附中高考适应性月考理科数学试卷(一)(解析版) 题型:选择题

已知函数的两个极值点分别为,且,点表示的平面区域为,若函数的图像上存在区域内的点,则实数的取值范围是(  )

A.     B.     C. D.

 

查看答案和解析>>

科目:高中数学 来源:2008-2009学年高三(上)数学寒假作业(文科)(解析版) 题型:解答题

已知函数存在两个极值点x1,x2,且x1<x2
(1)求证:函数f(x)的导函数f′(x)在(-2,0)上是单调函数;
(2)设A(x1,f(x1)),B(x2,f(x2)),若直线AB的斜率不小于-2,求实数a的取值范围.

查看答案和解析>>

同步练习册答案