精英家教网 > 高中数学 > 题目详情
已知二次函数y=ax2+bx+c的图象经过(-1,0),存在常数a,b,c使得不等式x≤y≤
1
2
(1+x2)
对一切实数x都成立,求常数a,b,c的值.
∵f(x)的图象过点(-1,0),∴a-b+c=0①
∵x≤f(x)≤
x2+1
2
对一切x∈R均成立,
∴当x=1时也成立,即1≤a+b+c≤1.
故有a+b+c=1.②
由①②得b=
1
2
,c=
1
2
-a.
∴f(x)=ax2+
1
2
x+
1
2
-a.
故x≤ax2+
1
2
x+
1
2
-a≤
x2+1
2
对一切x∈R成立,
也即
ax2-
1
2
x+
1
2
-a≥0
(1-2a)x2-x+2a≥0
恒成立?
1≤0
2≤0
a>0
1-2a>0
?
1
4
-4a(
1
2
-a)≤0
1-8a(1-2a)≤0
a>0
1-2a>0.

解得a=
1
4
.∴c=
1
2
-a=
1
4

∴常数a,b,c的值为:a=
1
4
,b=
1
2
,c=
1
4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=ax2+bx+c在(-1,+∞)上为减函数,则f(0)>0,则直线ax+by+c=0不经过第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

14、已知二次函数y=x2+ax+b-3,x∈R的图象恒过点(1,0),则a2+b2的最小值为
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=x2+ax+5在区间[2,+∞)上是增函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象经过原点,且f(x-1)=f(x)+x-1.
(1)求f(x)的表达式.
(2)设F(x)=4f(ax)+3a2x-1(a>0且a≠1),当x∈[-1,1]时,F(x)有最大值14,试求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二次函数y=x2+ax+b-3,x∈R的图象恒过点(1,0),则a2+b2的最小值为______.

查看答案和解析>>

同步练习册答案