精英家教网 > 高中数学 > 题目详情
设点p是椭圆(a>0,b>0)上一点,F1,F2分别是椭圆的左、右焦点,I为△PF1F2的内心,若 S△IPF1+S△IPF2=2S△IF1F2,则该椭圆的离心率是   
【答案】分析:设△PF1F2的内切圆半径为r,根据内心的性质,结合三角形面积公式将S△IPF1+S△IPF2=2S△IF1F2化简整理,可得|PF1|+|PF2|=2|F1F2|.由此结合椭圆离心率公式,即可得到该椭圆的离心率.
解答:解:设△PF1F2的内切圆半径为r,则
S△IPF1=|PF1|•r,S△IPF2=|PF2|•r,S△IF1F2=|F1F2|•r,
∵S△IPF1+S△IPF2=2S△IF1F2
|PF1|•r+|PF2|•r=|F1F2|•r,可得|PF1|+|PF2|=2|F1F2|.
∴椭圆的离心率e====
故答案为:
点评:本题已知椭圆的焦点三角形的一个面积关系式,求椭圆的离心率.着重考查了三角形内切圆的性质、椭圆的标准方程和简单性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设圆C1:x2+y2-10x-6y+32=0,动圆C2:x2+y2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求证:圆C1、圆C2相交于两个定点;
(Ⅱ)设点P是椭圆
x24
+y2=1
上的点,过点P作圆C1的一条切线,切点为T1,过点P作圆C2的一条切线,切点为T2,问:是否存在点P,使无穷多个圆C2,满足PT1=PT2?如果存在,求出所有这样的点P;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
与圆x2+y2=3b2的一个交点,F1,F2分别是椭圆的左、右焦点,且|PF1|=3|PF2|,则椭圆的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设点p是椭圆数学公式(a>0,b>0)上一点,F1,F2分别是椭圆的左、右焦点,I为△PF1F2的内心,若 S△IPF1+S△IPF2=2S△IF1F2,则该椭圆的离心率是________.

查看答案和解析>>

科目:高中数学 来源:2012年河北省衡水中学高考数学二模试卷(文科)(解析版) 题型:解答题

设点p是椭圆(a>0,b>0)上一点,F1,F2分别是椭圆的左、右焦点,I为△PF1F2的内心,若 S△IPF1+S△IPF2=2S△IF1F2,则该椭圆的离心率是   

查看答案和解析>>

同步练习册答案