精英家教网 > 高中数学 > 题目详情
4.函数$f(x)=\frac{4}{3}{x^3}-\frac{3}{2}{x^2}-x+210$的单调递增区间是(  )
A.$({-∞,-\frac{1}{4}}]$B.$[{-\frac{1}{4},1}]$C.[1,+∞)D.$({-∞,-\frac{1}{4}}]及[{1,+∞})$

分析 求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可.

解答 解:f′(x)=4x2-3x-1=(4x+1)(x-1),
令f′(x)≥0,解得:x≥1或x≤-$\frac{1}{4}$,
故选:D.

点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.(x-$\frac{2}{x}$)4(x-2)的展开式中,x2的系数为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知在△ABC中,b=4,c=8,B=30°,求C,A,a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,其中|$\overrightarrow{a}$=$\sqrt{2}$,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是(  )
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ) 证明:PA⊥BD;
(Ⅱ) 设PD=AD=1,求直线PC与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:方程x2+mx+1=0有两个不相等的实根;命题q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,而p且q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f (x)=ax-lnx(a∈R).
(1)当a=1时,求f (x)的最小值;
(2)已知e为自然对数的底数,存在x∈[$\frac{1}{e}$,e],使得f (x)=1成立,求a的取值范围;
(3)若对任意的x∈[1,+∞),有f (x)≥f ($\frac{1}{x}$)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求点M到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知F1,F2是双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左,右焦点,点P在双曲线上且不与顶点重合,过F2作∠F1PF2的角平分线的垂线,垂足为A.若$|{OA}|=\frac{b}{2}$,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.1+$\sqrt{2}$C.2$\sqrt{5}$D.2+$\sqrt{2}$

查看答案和解析>>

同步练习册答案