精英家教网 > 高中数学 > 题目详情
17.已知A、B是抛物线y2=2px(p>0)上的两点,且OA⊥OB,求两点的横坐标之积和纵坐标之积.

分析 先设出A,B,中点P的坐标,分别表示出AO,OB的斜率,利用二者垂直判断出二者斜率乘积为-1求得x1x2+y1y2=0把抛物线的方程代入即可求得x1x2和y1y2

解答 解:设A(x1,y1),B(x2,y2),中点P(x0,y0),kOA=$\frac{{y}_{1}}{{x}_{1}}$,kOB=$\frac{{y}_{2}}{{x}_{2}}$,
∵OA⊥OB,
∴x1x2+y1y2=0,
∵y12=2px1,y22=2px2
∴$\frac{{{y}_{1}}^{2}}{2p}$•$\frac{{{y}_{2}}^{2}}{2p}$+y1y2=0
∴y1y2=-4p2,x1x2=4p2

点评 本题主要考查了直线与圆锥曲线的综合问题.解题的关键是灵活利用韦达定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知集合M={y|y=x2-1,x∈R},集合N={x|y=$\sqrt{9-{x}^{2}}$,x∈R},则M∩N={x|-1≤x≤3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知幂函数f(x)=x${\;}^{-{m}^{2}+2m+3}$(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.
(1)求函数f(x)的解析式;
(2)设函数g(x)=$\sqrt{f(x)}$+2x+c,若g(x)>2对任意的x∈R恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆经过点($\frac{\sqrt{6}}{3}$,$\sqrt{3}$)和点($\frac{2\sqrt{2}}{3}$,1),求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等比数列{an}中,a4a8=9,则a3+a9的取值范围为(  )
A.[6,+∞)B.[6,+∞)∪(-∞,-6]C.(6,+∞)D.(-6,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知sinα和cosα是方程x2-kx+k+1=0的两根,且π<α<2π,求k,α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率与双曲线x2-y2=1的离心率互为倒数,且C过点P($\sqrt{2},1$).
(1)求C的方程;
(2)若C的左右焦点分别为F1,F2,过F1的直线l与C相交于A,B两点,求△F2AB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数y=f(x)=$\left\{\begin{array}{l}{3x+1,-3<x≤0}\\{2-{x}^{2},0<x<4}\end{array}\right.$.
(1)求函数的定义域;
(2)求f(2)、f(0)、f(-2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.三个数为$a={log_3}0.2,b={3^{0.2}},c={0.2^3}$,则a,b,c的大小关系为(  )
A.a>c>bB.a<b<cC.a<c<bD.a>b>c

查看答案和解析>>

同步练习册答案