精英家教网 > 高中数学 > 题目详情

0<x<数学公式,当x=________时,y=数学公式的最大值________.

    
分析:令t=x(1-4x)=-4x2+x=-4(x-2+,则y=,当x=时,t有最大值为,故所求式子最大值为
解答:因为函数t=x(1-4x)=-4x2+x=-4(x-2+
∴x=时,t有最大值为:
∴y=有最大值为:
点评:换元法,转化为求t的最大值,然后配方求t最大值,进而求出y的最大值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=ax2+bx+c(a,b,c为实常数),f(0)=1,g(x)=
f(x),x<0
-f(x),x>0

(Ⅰ)若f(-2)=0,且对任意实数x均有f(x)≥0成立,求g(x)的表达式;
(Ⅱ)在(Ⅰ)的条件下,若h(x)=f(x)+kx不是[-2,2]上的单调函数,求实数k的取值范围;
(Ⅲ)设a>0,m>0,n<0且m+n>0,当f(x)为偶函数时,求证:g(m)+g(n)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R).
(Ⅰ)若函数f(x)的图象过点(-2,1),且方程f(x)=0有且只有一个根,求f(x)的表达式;
(Ⅱ)在(Ⅰ)的条件下,当x∈[-1,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(Ⅲ)若函数f(x)为偶函数,且
f(x),x>0
-f(x),x<0
F(x)=求证:当mn<0,m+n>0,a>0时,F(m)+F(n)>0.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学复习(第5章 不等式):5.3 基本不等式(解析版) 题型:解答题

0<x<,当x=    时,y=的最大值   

查看答案和解析>>

科目:高中数学 来源:2013届安徽省高二下学期期中考试文科数学试卷(解析版) 题型:解答题

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)设,若对任意,不等式 恒成立,求实数的取值范围.

【解析】第一问利用的定义域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是

第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。

解: (I)的定义域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是     ........4分

(II)若对任意不等式恒成立,

问题等价于,                   .........5分

由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,

故也是最小值点,所以;            ............6分

当b<1时,

时,

当b>2时,;             ............8分

问题等价于 ........11分

解得b<1 或 或    即,所以实数b的取值范围是 

 

查看答案和解析>>

同步练习册答案