精英家教网 > 高中数学 > 题目详情
某人向一目标射击4次,每次击中目标的概率为
13
.该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.
(Ⅰ)设X表示目标被击中的次数,求X的分布列;
(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A).
分析:(1)由题意知目标被击中的次数X的取值是0、1、2、3、4,当X=0时表示四次射击都没有击中,当X=1时表示四次射击击中一次,以此类推,理解变量取值不同时对应的事件,用独立重复试验概率公式得到概率,写出分布列
(2)第一部分至少被击中1次或第二部分被击中2次所表示的事件,记出事件,根据事件之间的互斥关系,表示出事件,用相互独立事件同时发生和互斥事件的概率公式,得到结果.
解答:解:(Ⅰ)由题意知目标被击中的次数X的取值是0、1、2、3、4,
∵当X=0时表示四次射击都没有击中,
∴P(X=0)=
C
0
4
(1-
1
3
)
4
=
16
81

∵当X=1时表示四次射击击中一次,
P(X=1)=
C
1
4
 ×
1
3
×(
2
3
)
3
=
32
81

∵当X=2时表示四次射击击中两次,
∴P(X=2)=
C
2
4
(
1
3
)
2
(
2
3
)
2
=
24
81

同理用独立重复试验概率公式得到X=3和X=4的概率,
∴X的分列为
精英家教网
(Ⅱ)设A1表示事件“第一次击中目标时,击中第i部分”,i=1,2.
B1表示事件“第二次击中目标时,击中第i部分”,i=1,2.
依题意知P(A1)=P(B1)=0.1,
P(A2)=P(B2)=0.3,
A=A1
.
B1
.
A1
B1A1B1A2B2

所求的概率为P(A)=P(A1
.
B1
)+P(
.
A1
B1)+P(A1B1)+P(A2B2)
P(A1
.
B1
)+P(
.
A1
)P(B1)+P(A1)P(B1)+P(A2)P(B2)
=
0.1×0.9+0.9×0.1+0.1×0.1+0.3×0.3=0.28
点评:本题考查离散型随机变量和相互独立事件的概率以及互斥事件的概率,解决离散型随机变量分布列问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分12分)

某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。

(Ⅰ)设X表示目标被击中的次数,求X的分布列;

(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A        

查看答案和解析>>

科目:高中数学 来源: 题型:

某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。

(Ⅰ)设X表示目标被击中的次数,求X的分布列;

(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009辽宁卷理)(本小题满分12分)

某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。

(Ⅰ)设X表示目标被击中的次数,求X的分布列;

(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A        

查看答案和解析>>

科目:高中数学 来源:2009年辽宁省高考数学试卷(理科)(解析版) 题型:解答题

某人向一目标射击4次,每次击中目标的概率为.该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.
(Ⅰ)设X表示目标被击中的次数,求X的分布列;
(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A).

查看答案和解析>>

同步练习册答案