精英家教网 > 高中数学 > 题目详情
1.已知变量x,y满足$\left\{\begin{array}{l}{y≥0}\\{y≤x}\\{y≤2-x}\end{array}\right.$,若目标函数z=ax+by(b>a>0)的最大值为9,则$\frac{2}{a}$+$\frac{8}{b}$的最小值为(  )
A.1B.2C.10D.12

分析 作出不等式对应的平面区域,利用z的几何意义确定取得最大值的条件,然后利用基本不等式进行求$\frac{2}{a}$+$\frac{8}{b}$的最小值.

解答 解:由z=ax+by(a>0,b>0)得$y=-\frac{a}{b}x+\frac{z}{b}$,
∵b>a>0,∴直线的斜率k=-$\frac{a}{b}$∈(-1,0),
作出不等式对应的平面区域如图:
平移直线得$y=-\frac{a}{b}x+\frac{z}{b}$,由图象可知当直线$y=-\frac{a}{b}x+\frac{z}{b}$经过点A时,直线$y=-\frac{a}{b}x+\frac{z}{b}$的截距最大,此时z最大.
由$\left\{\begin{array}{l}{y=x}\\{y=2-x}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即A(1,1),
此时目标函数z=ax+by的最大值为9,
即a+b=9,∴$\frac{1}{9}$(a+b)=1,
$\frac{2}{a}$+$\frac{8}{b}$=($\frac{2}{a}$+$\frac{8}{b}$)×1=($\frac{2}{a}$+$\frac{8}{b}$)×$\frac{1}{9}$(a+b)=$\frac{2}{9}$+$\frac{8}{9}$+$\frac{2b}{9a}$+$\frac{8a}{9b}$
≥$\frac{10}{9}$+2$\sqrt{\frac{2b}{9a}•\frac{8a}{9b}}$=$\frac{10}{9}$+2×$\frac{4}{9}$=$\frac{18}{9}$=2,
当且仅当$\frac{2b}{9a}$=$\frac{8a}{9b}$,即b=2a,即b=6,a=3时取等号.
即$\frac{2}{a}$+$\frac{8}{b}$的最小值为2,
故选:B

点评 本题主要考查线性规划的基本应用,以及基本不等式的应用,利用数形结合求出目标函数取得最大值的条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设Sn是等比数列{an}的前n项和,S9是S3与S6的等差中项,且a2+a5=2am,则m=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.2${\;}^{1-lo{g}_{\frac{1}{2}}3}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{y+1≥0}\\{x+y+1≤0}\end{array}\right.$,则目标函数z=-x+2y取最大值时的最优解是(  )
A.(-2,-1)B.(0,-1)C.(-1,-1)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一辆汽车在一条水平的公路上向正西行驶,如图,到A处时测得公路北侧一铁塔底部C在西偏北30°的方向上,行驶200m后到达B处,测得此铁塔底部C在西偏北75°的方向上,塔顶D的仰角为30°,则此铁塔的高度为(  )
A.$\frac{100\sqrt{6}}{3}$mB.50$\sqrt{6}$mC.100$\sqrt{3}$mD.100$\sqrt{2}$m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个工人看管三台机床,在一小时内,这三台机床需要工人照管的概率分别0.9、0.8、0.6,则在一小时内没有一台机床需要工人照管的概率为(  )
A.0 006B.0.008C.0.004D.0.016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在区间[0,1]任取两个数x、y,则满足x+2y≤1的概率P=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设Sn表示数列{an}的前n项和.
(Ⅰ)若{an}是等差数列,试证明:Sn=$\frac{{n({a_1}+{a_n})}}{2}$;
(Ⅱ)若a1=1,q≠0,且对所有的正整数n,有Sn=$\frac{{1-{q^n}}}{1-q}$,判断{an}是否为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列方程在[-2π,2π]上的解集:
(1)sin2x-2sinx-3=0
(2)3sin$\frac{x}{2}$+cosx+1=0.

查看答案和解析>>

同步练习册答案