| A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{2}}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{2}{3}$ |
分析 作DE⊥BC,交BC于E,作AO⊥平在BDC,交DE于O,作QP⊥平面BDC,交DE于P,连结QC,CP,则∠PCQ是CQ与平面DBC所成角,由此能求出CQ与平面DBC所成角的正弦值.
解答
解:作DE⊥BC,交BC于E,作AO⊥平面BDC,交DE于O,
作PQ⊥平面BDC,交DE于P,连结QC,CP,
则∠PCQ是CQ与平面DBC所成角,
设正四面体ABCD的棱长为2,
则DE=QC=DE=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
DO=$\frac{2}{3}$DE=$\frac{2\sqrt{3}}{3}$,DP=$\frac{\sqrt{3}}{3}$,
AO=$\sqrt{4-\frac{4}{3}}$=$\frac{2\sqrt{6}}{3}$,PQ=$\frac{1}{2}$AO=$\frac{\sqrt{6}}{3}$,
∴sin∠PCQ=$\frac{PQ}{QC}$=$\frac{\frac{\sqrt{6}}{3}}{\sqrt{3}}$=$\frac{\sqrt{2}}{3}$.
∴CQ与平面DBC所成角的正弦值为$\frac{\sqrt{2}}{3}$.
故选:B.
点评 本题考查直线与平面所成角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | e${\;}^{\frac{x}{2}}$, | B. | xe${\;}^{\frac{x}{2}}$, | C. | $\frac{1}{2}$•e${\;}^{\frac{x}{2}}$, | D. | $\frac{x}{2}$•e${\;}^{\frac{x}{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com