精英家教网 > 高中数学 > 题目详情

已知函数处都取得极值.

(1)求的值;

(2)若对时,恒成立,求实数的取值范围

 

【答案】

(1)                        ………………2分

处都取得极值

……………3分

即                                 ………………4分

经检验符合                                         ………………5分

(2)由(1)可知,

                ………6分

0,得的单调增区间为,由0,得的单调减区间为=1是的极大值点   ………8分

时,=--4,=-3++4

-=4e-9-

所以>,即上的最小值为+4-3e,  …………9分

要使对时,恒成立,必须 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知函数f(x)是定义在实数集R上的函数,给出下列结论:
①若存在常数x0,使f′(x)=0,则函数f(x)必在x0处取得极值;
②若函数f(x)在x0处取得极值,则函数f(x)在x0处必可导;
③若函数f(x)在R上处处可导,则它有极小值就是它在R上的最小值;
④若对于任意x≠x0都有f(x)>f(x0),则f(x0)是函数f(x)的最小值;
⑤若对于任意x<x0有f′(x)>0,对于任意x>x0有f′(x)<0,则f(x0)是函数f(x)的一个最大值;
其中正确结论的序号是
④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2+ax,g(x)=lnx,F(x)=f(x)+g(x).
(Ⅰ)若F(x)在x=1处取得极小值,求F(x)的极大值;
(Ⅱ)若F(x)在区间(0,
14
)
上是增函数,求实数a的取值范围;
(Ⅲ)若a=3,问是否存在与曲线y=f(x)和y=g(x)都相切的直线?若存在,判断有几条?并加以证明,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+a2在x=1处取得极值4,且|a|<|b|.
(1)求a、b的值,并确定f(1)是函数的极大值还是极小值;
(2)若对于任意x∈[0,2]的时,都有x3+ax2+bx>c2+6c成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx在x=-
23
与x=1处都取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)求f(x)的单调区间及极大值、极小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省沈阳二中等重点中学协作体高考预测数学试卷11(文科)(解析版) 题型:解答题

已知函数f(x)=2x2+ax,g(x)=lnx,F(x)=f(x)+g(x).
(Ⅰ)若F(x)在x=1处取得极小值,求F(x)的极大值;
(Ⅱ)若F(x)在区间上是增函数,求实数a的取值范围;
(Ⅲ)若a=3,问是否存在与曲线y=f(x)和y=g(x)都相切的直线?若存在,判断有几条?并加以证明,若不存在,说明理由.

查看答案和解析>>

同步练习册答案