分析 由$\overrightarrow{a}$∥$\overrightarrow{b}$得出坐标对应成比例,分别求出实数m和r即可
解答 解:向量$\overrightarrow{a}$=m$\overrightarrow{i}$+5$\overrightarrow{j}$-$\overrightarrow{k}$=(m,5,-1),$\overrightarrow{b}$=3$\overrightarrow{i}$+$\overrightarrow{j}$+r$\overrightarrow{k}$=(3,1,r),$\overrightarrow{a}$∥$\overrightarrow{b}$,
则$\frac{m}{3}$=$\frac{5}{1}$=$\frac{-1}{r}$
解得m=15,r=-$\overline{5}$
故答案为:15,-$\frac{1}{5}$
点评 本题考点是空间共线向量的坐标表示,考查了空间共线向量等价条件的简单应用.
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {0,1} | C. | {1,2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\{x|kπ+\frac{π}{8}≤x≤kπ+\frac{5π}{8},k∈Z\}$ | B. | {x|kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,k∈Z} | ||
| C. | {x|2kπ+$\frac{π}{8}$≤x≤2kπ+$\frac{5π}{8}$,k∈Z} | D. | {x|2kπ-$\frac{3π}{8}$≤x≤2kπ+$\frac{π}{8}$,k∈Z} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [3,+∞) | B. | (3,+∞) | C. | $[2\sqrt{2},+∞)$ | D. | $(2\sqrt{2},+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com