精英家教网 > 高中数学 > 题目详情
若集合{x,xy,1g(xy)}={0,|x|,y},则1og8(x2+y2)=
 
分析:由集合中元素的互异性可得 y=x=-1,再由对数的运算性质求得1og8(x2+y2)的值.
解答:解:∵集合{x,xy,1g(xy)}={0,|x|,y},由集合中元素的互异性可得 xy=1,且 y=x=-1,
1og8(x2+y2)=log82=
lg2
3lg2
=
1
3

故答案为
1
3
点评:本题主要考查集合中元素的互异性、对数的运算性质的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={a,2},若集合A*B中有且只有3个元素,则a的取值的集合是
{0,1,4}
{0,1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

集合M={1,x,y},N={x2,x,xy},若M=N,求x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={f(x)|y=f(x)},其元素f(x)须同时满足下列三个条件:
①定义域为(-1,1);
②对于任意的x,y∈(-1,1),均有f(x)+f(y)=f(
x+y
1+xy
)

③当x<0时,f(x)>0.
(Ⅰ)若函数f(x)∈M,证明:y=f(x)在定义域上为奇函数;
(Ⅱ)若函数h(x)=ln
1-x
1+x
,判断是否有h(x)∈M,说明理由;
(Ⅲ)若f(x)∈M且f(-
1
2
)=1
,求函数y=f(x)+
1
2
的所有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A具有以下性质:①0∈A,1∈A;②若x,y∈A,则x-y∈A,且x≠0时,
1
x
∈A
.则称集合A是“好集”.
(Ⅰ)分别判断集合B={-1,0,1},有理数集Q是否是“好集”,并说明理由;
(Ⅱ)设集合A是“好集”,求证:若x,y∈A,则x+y∈A;
(Ⅲ)对任意的一个“好集”A,分别判断下面命题的真假,并说明理由.
命题p:若x,y∈A,则必有xy∈A;
命题q:若x,y∈A,且x≠0,则必有
y
x
∈A

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)若集合A具有以下性质:①0∈A,1∈A;②若x,y∈A,则x-y∈A,且x≠0时,
1
x
∈A
.则称集合A是“好集”.
(1)集合B={-1,0,1}是好集;
(2)有理数集Q是“好集”;
(3)设集合A是“好集”,若x,y∈A,则x+y∈A;
(4)设集合A是“好集”,若x,y∈A,则必有xy∈A;
(5)对任意的一个“好集A”,若x,y∈A,且x≠0,则必有
y
x
∈A

则上述命题正确的个数有(  )

查看答案和解析>>

同步练习册答案