精英家教网 > 高中数学 > 题目详情

(本题满分14分)已知圆,圆,动点到圆,上点的距离的最小值相等.

(1)求点的轨迹方程;

(2)点的轨迹上是否存在点,使得点到点的距离减去点到点的距离的差为,如果存在求出点坐标,如果不存在说明理由.

 

【答案】

(1)点的轨迹方程是.(2)点的轨迹上不存在满足条件的点.  

【解析】本试题主要是考查了动点的轨迹方程的求解,以及满足动点到定点的距离差为定值的点是否存在的探索性问题的运用。

((1)根据已知设出点的坐标,因为点到圆上点的距离的最小值相等,所以可知点到圆心的距离相等,因此得到轨迹方程。

(2)假设存在点满足题意可知,得到关于x,y的方程,然后利用方程有无解来判定是否存在的问题。

解:(1)设动点的坐标为

的圆心坐标为,圆的圆心坐标为, 

因为动点到圆,上的点距离最小值相等,所以,

,化简得

因此点的轨迹方程是.

(2)假设这样的点存在,设点

因为点到点的距离减去点到点的距离的差为4,

所以

点在直线上, 点的坐标是方程组的解,

消元得,方程组无解,

所以点的轨迹上不存在满足条件的点.  

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分)已知向量 ,函数.   (Ⅰ)求的单调增区间;  (II)若在中,角所对的边分别是,且满足:,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)已知,且以下命题都为真命题:

命题 实系数一元二次方程的两根都是虚数;

命题 存在复数同时满足.

求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年吉林省高三第一次月考文科数学试卷(解析版) 题型:解答题

(本题满分14分)已知函数

(1)若,求x的值;

(2)若对于恒成立,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省惠州市高三第三次调研考试数学理卷 题型:解答题

(本题满分14分)

已知椭圆的离心率为,过坐标原点且斜率为的直线相交于

⑴求的值;

⑵若动圆与椭圆和直线都没有公共点,试求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省惠州市高三第三次调研考试数学理卷 题型:解答题

((本题满分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).

(1)当x=2时,求证:BD⊥EG ;

(2)若以F、B、C、D为顶点的三棱锥的体积记为

的最大值;

(3)当取得最大值时,求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步练习册答案