精英家教网 > 高中数学 > 题目详情
9.已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为4,求直线l的方程.

分析 (1)由直线系方程的逆用联立方程组求解直线l过定点;
(2)求出直线在两坐标轴上的截距,由三角形的面积公式可求解直线的斜率,代入直线方程即可得到答案.

解答 (1)证明:(1)由kx-y+1+2k=0,得k(x+2)-y+1=0,
联立$\left\{\begin{array}{l}{x+2=0}\\{-y+1=0}\end{array}\right.$,得x=-2,y=1.所以直线l过定点(-2,1);
(2)由kx-y+1+2k=0,取x=0,得y=2k+1,
取y=0,得x=-$\frac{1}{k}$-2.
所以,△ABC的面积为S=$\frac{1}{2}×|2k+1|×|-\frac{1}{k}-2|$=4.
解得k=$\frac{1}{2}$.
所以直线l的方程为x-2y+4=0.

点评 本题考查了直线的一般方程,考查了直线系方程的逆用,训练了直线方程一般式和截距式的互化,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|1≤x≤2},B={x|x2+ax+2≤0} a∈R.
(1)若A=B,求实数a的取值.
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知中心是原点、焦点在y轴上的椭圆C长轴长为4,且椭圆C过点P(1,$\sqrt{2}$),
(1)求此椭圆的方程;
(2)过点P作倾斜角互补的两条直线PA、PB,分别交椭圆C于A、B两点.求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在三棱锥S-ABC中,已知AB=AC,O是BC的中点,平面SAO⊥平面ABC,求证:∠SAB=∠SAC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知直线y=x+1与曲线y=1nx+a相切,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校书法兴趣组有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:
一年级二年级三年级
男同学ABC
女同学XYZ
现从这6名同学中随机选出2人参加书法比赛(每人被选到的可能性相同).
(1)用表中字母列举出所有可能的结果;
(2)设M为事件“选出的2人来自不同年级且性别相同”,求事件M发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,已知∠BCA=$\frac{π}{4}$,BC=$\sqrt{2}$,AC=3,则sin∠ABC=(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{5}$C.$\frac{3\sqrt{10}}{10}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算:
(1)${27^{\frac{2}{3}}}+{16^{-\frac{1}{2}}}-{(\frac{1}{2})^{-2}}-{(\frac{8}{27})^{-\frac{2}{3}}}$
(2)lg14-2lg$\frac{17}{3}$+lg7-lg18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知∠ABC=90°,BC∥平面α,AB与平面α斜交,那么∠ABC在平面α内的射影是(  )
A.锐角B.直角
C.锐角或直角D.锐角或直角或钝角

查看答案和解析>>

同步练习册答案