精英家教网 > 高中数学 > 题目详情
16.对于实数x,用[x]表示不超过x的最大整数,如[0.32]=0,[5.68]=5.若n为正整数,an=[$\frac{n}{4}$],Sn为数列{an}的前n项和,则S40=(  )
A.190B.180C.170D.160

分析 an=[$\frac{n}{4}$],可得n=1,2,3时,an=0;n=4,5,6,7,an=1;n=8,9,10,11,an=2;…,n=36,37,38,39,an=9.n=40,an=10.即可得出.

解答 解:an=[$\frac{n}{4}$],可得n=1,2,3时,an=0;
n=4,5,6,7,an=1;
n=8,9,10,11,an=2;
n=12,13,14,15,an=3;
…,
n=36,37,38,39,an=9.
n=40,an=10.
则S40=0+4×(1+2+…+8+9)+10=$4×\frac{9×(1+9)}{2}$+10=190.

点评 本题考查了等差数列的求和公式、取整函数的性质,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),且圆C′:x2+y2=1过椭圆C的上顶点和右焦点.
(1)求椭圆C的标准方程和离心率;
(2)已知直线l与椭圆C只有1个交点,探究:是否存在两个定点P(x1,0)、Q(x2,0),且x1<x2,使得P、Q到直线l的距离之积为1.如果存在,求出这两个定点的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若圆C经过点A(1,2)及点B(3,1),且以AB为直径,则圆C的标准方程为(x-2)2+(y-$\frac{3}{2}$)2=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ln(x+2a)-ax,a>0.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)记f(x)的最大值为M(a),若a2>a1>0且M(a1)=M(a2),求证:${a_1}{a_2}<\frac{1}{4}$;
(Ⅲ)若a>2,记集合{x|f(x)=0}中的最小元素为x0,设函数g(x)=|f(x)|+x,求证:x0是g(x)的极小值点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图所示,在四边形ABCD中,AB=AD=CD=1,BD=$\sqrt{2}$,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是(2)(3).
(1)A′C⊥BD;
(2)∠BA′C=90°;
(3)四面体A′-BCD的体积为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在正方体ABCD-A1B1C1D1中,与平面ACC1A1平行的棱共有(  )
A.2条B.3条C.4条D.6条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等比数列{an}中,a1=3,a8=9,函数f(x)=x(x-a1)(x-a2)…(x-a8),则f'(0)=(  )
A.36B.39C.312D.315

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为了得到函数y=3cos2x,x∈R的图象,只需要把函数y=3cos(2x+$\frac{π}{5}$),x∈R的图象上所有的点(  )
A.向左平移$\frac{π}{5}$个单位长度B.向右平移$\frac{π}{5}$个单位长度
C.向左平移$\frac{π}{10}$个单位长度D.向右平移$\frac{π}{10}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.不等式x(2-x)≥0的解集是[0,2].

查看答案和解析>>

同步练习册答案