精英家教网 > 高中数学 > 题目详情
某电视生产厂家有A、B两种型号的电视机参加家电下乡活动.若厂家投放A、B型号电视机的价值分别为p、q万元,农民购买电视机获得相应的补贴分别为
1
10
p,mln(q+1)(m>0)万元已知厂家把价值为10万元的A、B两种型号的电视机投放市场,且A、B两种型号的电视机投放金额都不低于1万元(精确到0.1,参考数据:ln4≈1.4).
(1)当m=
2
5
时,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出其最大值;
(2)讨论农民得到的补贴随厂家投放B型号电视机金额的变化而变化的情况.
分析:(1)将m=
2
5
代入到mln(q+1)中得到农民购买B种型号电视机获得相应的补贴为
2
5
ln(q+1).然后设出农民得到的补贴为y元,令y′=0,并根据增减性判断出y有最大值求出即可.
(2)根据题意,考查y=lnx函数的增减性可得答案.
解答:解;(1)当m=
2
5
时,农民购买B种型号电视机获得相应的补贴为
2
5
ln(q+1).
设厂家投放市场A、B两种型号的电视机的价值分别为x万元,(10-x)万元,这次活动中农民得到的补贴为y万元,
则y=
x
10
+
2
5
ln(11-x),
然后令y′=0得:
1
10
-
2
55-5x
=0,
解得:x=7,
∵1<x<7时,y′>0,y是增函数;7<x<11时,y′<0,y是减函数.
∴x=7时,y有最大值,ymax=
7
10
+
2
5
ln4≈1.26万元;
(2)设投放B型号电视机金额为b,
这次活动中农民得到的补贴为y=
10-b
10
+mln(1+b),
∵1≤b<10,y=lnx是增函数,
所以投放B型号电视机金额大农民得到的补贴就多.
点评:考查学生利用导数在函数闭区间求最大值问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某电视生产厂家有A、B两种型号的电视机参加家电下乡活动.若厂家投放A、B型号电视机的价值分别为p、q万元,农民购买电视机获得的补贴分别为
1
10
p,
2
5
lnq
万元.已知厂家把总价值为10万元的A、B两种型号电视机投放电场,且A、B型号的电视机投放金额不低于1万元,请你制订一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值(精确到0.1,参考数据:ln4=1.4)

查看答案和解析>>

科目:高中数学 来源:山东模拟 题型:解答题

某电视生产厂家有A、B两种型号的电视机参加家电下乡活动.若厂家投放A、B型号电视机的价值分别为p、q万元,农民购买电视机获得相应的补贴分别为
1
10
p,mln(q+1)(m>0)万元已知厂家把价值为10万元的A、B两种型号的电视机投放市场,且A、B两种型号的电视机投放金额都不低于1万元(精确到0.1,参考数据:ln4≈1.4).
(1)当m=
2
5
时,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出其最大值;
(2)讨论农民得到的补贴随厂家投放B型号电视机金额的变化而变化的情况.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省高三上学期九月月考理科数学卷 题型:解答题

(本小题满分12分)   

某电视生产厂家有A、B两种型号的电视机参加家电下乡活动.若厂家投放A、B型号电视机的价值分别为p、q万元,农民购买电视机获得相应的补贴分别为已知厂家把价值为10万元的A、B两种型号的电视机投放市场,且A、B两种型号的电视机投放金额都不低于1万元(精确到0.1,参考数据:).

(1)请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出其最大值;

(2)讨论农民得到的补贴随厂家投放B型号电视机金额的变化而变化的情况.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省赣州市会昌中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

某电视生产厂家有A、B两种型号的电视机参加家电下乡活动.若厂家投放A、B型号电视机的价值分别为p、q万元,农民购买电视机获得的补贴分别为万元.已知厂家把总价值为10万元的A、B两种型号电视机投放电场,且A、B型号的电视机投放金额不低于1万元,请你制订一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值(精确到0.1,参考数据:ln4=1.4)

查看答案和解析>>

同步练习册答案