精英家教网 > 高中数学 > 题目详情
精英家教网已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线分别交AE、AB于点F、D.
(1)求∠ADF的度数;
(2)若AB=AC,求
ACBC
的值.
分析:(1)由已知中C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线分别交AE、AB于点F、D根据弦切角定理,三角形外角定理,及圆周角定理的推论,我可判断出△ADF为等腰直角三角形,进而可得∠ADF的度数;
(2)若AB=AC,结合(1)的结论,我们可得△ABC三个角分别为30°,30°,120°,解三角形,即可得到
AC
BC
的值.
解答:解:(1)∵CA切圆O于A点,
由弦切角定理,
可得∠CAE=∠B
又∵CD为∠ACB的角平分线,
∴∠ACD=∠BCD
∴∠ACD+∠CAE=∠B+∠BCD
即∠ADF=∠AFD
又∵BE为圆O的直径
∴∠DAF=90°
∴∠ADF=45°
(2)若AB=AC,则∠CAE=∠B=∠ACB=30°
AC
BC
=
3
3
点评:本题考查的知识点是圆周角定理,弦切角定理,三角形外角定理,本题没有给出任何角而求角,故思路一定是证明未知角是特殊角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,点M(m,0)在x轴的正半轴上,过M的直线l与C相交于A、B两点,O为坐标原点.
(Ⅰ)若m=1,l的斜率为1,求以AB为直径的圆的方程;
(Ⅱ)若存在直线l使得|AM|,|OM|,|MB|成等比数列,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选讲) 若f(x)=|x-t|+|5-x|的最小值为3,则实数t的值是
 

B.(平面几何选讲) 已知C点在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线交AE于点F,交AB于D点.∠ADF=
 

C.(极坐标与参数方程) 直线
x=1+
4
5
t
y=-1-
3
5
t
(t为参数)被曲线ρ=
2
cos(θ-
π
4
)
所截的弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选讲) 若f(x)=|x-t|+|5-x|的最小值为3,则实数t的值是________.
B.(平面几何选讲) 已知C点在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线交AE于点F,交AB于D点.∠ADF=________.
C.(极坐标与参数方程) 直线数学公式(t为参数)被曲线数学公式所截的弦长为________.

查看答案和解析>>

科目:高中数学 来源:2011年陕西省西安中学高考数学第十三次模拟试卷(理科)(解析版) 题型:填空题

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选讲) 若f(x)=|x-t|+|5-x|的最小值为3,则实数t的值是   
B.(平面几何选讲) 已知C点在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线交AE于点F,交AB于D点.∠ADF=   
C.(极坐标与参数方程) 直线(t为参数)被曲线所截的弦长为   

查看答案和解析>>

科目:高中数学 来源:2011年陕西省西安中学高考数学第十三次模拟试卷(文科)(解析版) 题型:填空题

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选讲) 若f(x)=|x-t|+|5-x|的最小值为3,则实数t的值是   
B.(平面几何选讲) 已知C点在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线交AE于点F,交AB于D点.∠ADF=   
C.(极坐标与参数方程) 直线(t为参数)被曲线所截的弦长为   

查看答案和解析>>

同步练习册答案