精英家教网 > 高中数学 > 题目详情
已知f(x)=lg(-x2+8x-7)在(m,m+1)上是增函数,则m的取值范围是
 
分析:先求函数的定义域,结合复合函数的单调性及对数函数的单调性可知t=-x2+8x-7在(m,m+1)上是增函数,而该函数的增区间是(1,4],从而可得(m,m+1)⊆(1,4]
解答:解:函数的定义域(1,7)
∵f(x)=lg(-x2+8x-7)在(m,m+1)上是增函数
由复合函数的单调性可知t=-x2+8x-7在(m,m+1)上单调递增且t>0
函数的增区间(1,4],减区间[4,7)
m≥1
m+1≤4
  1≤m≤3
故答案为:1≤m≤3
点评:本题考查了复合函数的单调性:对数函数与二次函数的单调性,关键是要注意对数的真数大于零的要求,即函数定义域的求解,漏掉这一点,就会把函数的单调区间弄错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=lg(1+x)+alg(1-x)是奇函数.
(1)求f(x)的定义域
(2)求a的值;
(3)当k>0时,解关于x的不等式f(x)≥lg
1+xk

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)已知f(x)=lg(x+1)
(1)若0<f(1-2x)-f(x)<1,求x的取值范围;
(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=|lg(x-2)|,当a<b时,f(a)=f(b),则a+b的取值范围为
(6,+∞)
(6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lg(-x2+8x-7)在(m,m+1)上是增函数,则m取值范围是(  )

查看答案和解析>>

同步练习册答案