精英家教网 > 高中数学 > 题目详情

(理科)已知函数f(x)=(1+x)2-2ln(1+x).
(1)若存在x0∈[0,1]使不等式f(x0)-m≤0能成立,求实数m的最小值;
(2)若关于x的方程f(x)=x2+x+a在[0,2]上恰有两个相异实根,求实数a的取值范围.

解:(1)要存在x0∈[0,1]使得不等式f(x0)-m≤0能成立,只需x∈[0,1]时,m≥f(x)min
求导得f′(x)=2(1+x)-,定义域为(-1,+∞),
∵当x∈(-1,0)时,f′(x)<0,∴函数f(x)在区间(-1,0)上是减函数;
当x∈(0,+∞)时,f′(x)>0,∴函数f(x)在区间(0,+∞)上是增函数.
∴f(x)min=f(0)=1,∴m≥1.故实数m的最小值为1.
(2)关于x的方程f(x)=x2+x+a在[0,2]上恰有两个相异实根,即方程1+x-2ln(1+x)=a在区间[0,2]上恰有两个相异实根.
设h(x)=(1+x)-2ln(1+x),则h′(x)=
由h′(x)>0,得x>1或x<-1(舍去);由h′(x)<0,得-1<x<1.
∴h(x)在[0,1]上递减,在[1,2]上递增.
∵h(  )>h(2),且h(x)在[0,2]上连续
∴方程1+x-2ln(1+x)=a在区间[0,2]上恰有两个相异实根时,h(1)<a≤h(2)
∴2-2ln2<a≤3-2ln3,
∴实数a的取值范围是(2-2ln2,3-2ln3).
分析:(1)要存在x0∈[0,1]使得不等式f(x0)-m≤0能成立,只需x∈[0,1]时,m≥f(x)min,利用导数研究函数的单调性,可以得到f(x)在(-1,0)上为减函数,f(x)在(0,+∞)为增函数,即f(x)的最小值为f(0)=1,所以m的最小值为1
(2)原题设即方程1+x-2ln(1+x)=a在区间[0,2]上恰有两个相异实根,令h(x)=1+x-2ln(1+x),这时只需解出h(x)在[0,2]上的值域,就可以得出a的取值范围.
点评:本题考查利用导数研究函数的单调性,本题比较新颖的地方是,求解(2)中的a的取值范围,经过等价变换,只需求h(x)=(1+x)-2ln(1+x)的值域,从而解出a的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理科)已知函数f(x)=alnx-ax-3(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对任意的t∈[1,2],若函数g(x)=x3+x2[f/(x)+
m
2
]
在区间(t,3)上有最值,求实数m取值范围;
(3)求证:ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*
(文科) 已知函数f(x)=ax3+
1
2
x2-2x+c

(1)若x=-1是f(x)的极值点且f(x)的图象过原点,求f(x)的极值;
(2)若g(x)=
1
2
bx2-x+d
,在(1)的条件下,是否存在实数b,使得函数g(x)的图象与函数f(x)的图象恒有含x=-1的三个不同交点?若存在,求出实数b的取值范围;否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)已知函数f(x)=3-4asinxcosx+4cos2x-4cos4x.若函数f(x)的最小值为1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)已知函数f(x)=xlnx.
(1)若存在x∈[
1
e
,e]
,使不等式2f(x)≥-x2+ax-3成立,求实数a的取值范围;
(2)设0<a<b,证明:f(a)+f(b)-2f(
a+b
2
)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)已知函数f(x)=
(3-a)x-3,(x≤7)
ax-6,(x>7)
若x∈Z时,函数f(x)为递增函数,则实数a的取值范围为
(2,3)
(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•甘肃一模)(理科)已知函数f(x)=(1+x)2-2ln(1+x).
(1)若存在x0∈[0,1]使不等式f(x0)-m≤0能成立,求实数m的最小值;
(2)若关于x的方程f(x)=x2+x+a在[0,2]上恰有两个相异实根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案