精英家教网 > 高中数学 > 题目详情
已知命题P:“所有的平行四边形都不是矩形”,则¬P:
有的平行四边形是矩形
有的平行四边形是矩形
分析:命题P:“所有的平行四边形都不是矩形”是含有量词“所有”的全称命题的否定,其否定形式为特称命题,否定时要先改变量词的形式,可得答案.
解答:解:∵命题P:“所有的平行四边形都不是矩形”,
∴命题P的否定形式为:有的平行四边形是矩形.
故答案为:有的平行四边形是矩形.
点评:此题是基础题.本题主要考查全称命题与特称命题的相互转化问题.这里注意,全称命题的否定是特称命题,反过来特称命题的否定是全称命题.
练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题理科数学试卷(解析版) 题型:解答题

已知是公差为d的等差数列,是公比为q的等比数列

(Ⅰ)若 ,是否存在,有?请说明理由;

(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;

(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.

【解析】第一问中,由,整理后,可得为整数不存在,使等式成立。

(2)中当时,则

,其中是大于等于的整数

反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)中设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

结合二项式定理得到结论。

解(1)由,整理后,可得为整数不存在,使等式成立。

(2)当时,则,其中是大于等于的整数反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

   由,得

为奇数时,此时,一定有使上式一定成立。为奇数时,命题都成立

 

查看答案和解析>>

同步练习册答案