精英家教网 > 高中数学 > 题目详情
5.若cosα=$\frac{k+1}{k-3}$,sinα=$\frac{k-1}{k-3}$,则tanα的值为(  )
A.$\frac{3}{4}$或0B.$\frac{4}{3}$或0C.-$\frac{3}{4}$或0D.-$\frac{4}{3}$或0

分析 由cos2α+sin2α=1,解得k=1或k=-7,由此分别求出正弦值和余弦值,利用$tanα=\frac{sinα}{cosα}$,能求出tanα的值.

解答 解:∵cosα=$\frac{k+1}{k-3}$,sinα=$\frac{k-1}{k-3}$,
∴cos2α+sin2α=($\frac{k+1}{k-3}$)2+($\frac{k-1}{k-3}$)2=1,
解得k=1或k=-7,
当k=1时,$cosα=\frac{2}{-2}$=-1,sinα=0,$tanα=\frac{sinα}{cosα}$=$\frac{0}{-1}=0$,
当k=-7时,$cosα=\frac{-6}{-10}$=$\frac{3}{5}$,sinα=$\frac{-8}{-10}$=$\frac{4}{5}$,$tanα=\frac{sinα}{cosα}$=$\frac{\frac{4}{5}}{\frac{3}{5}}$=$\frac{4}{3}$,
∴tanα的值为$\frac{4}{3}$或0.
故选:B.

点评 本题考查三角函数值的求法,是基础题,解题时要认真审题,注意同角三角函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若函数y=$\frac{3x+27}{x-3}$在区间(a,b)上的值或是(9,+∞),则logab=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=-2asin(2x+$\frac{π}{6}$)+2a+b的定义域为[0,$\frac{π}{2}$],值域为[-5,1].
(1)求实数a,b的值;
(2)求函数g(x)=-4asin(bx-$\frac{π}{3}$)的最小值并求出对应x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.求双曲线y2-x2=1和抛物线y2=mx有两个公共点的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.依法纳税是每个公民应尽的义务,国家征收个人工资、薪金所得税是分段计算的:总收入不超过3500元,免征个人工资、薪金所得税;超过3500元的部分需征税,设全月应纳税额(所得额指工资、薪金中应纳税的部分)为x,x=(全月总收入-“三险一金”-扣除数)元,税率如表所示:
级  数全月应纳税所得额x税  率
1不超过1500元的部分3%
2超过1500元至4500元的部分10%
3超过4500元至9000元的部分20%
4超过9000元至35000元的部分25%
5超过35000元至55000元的部分30%
6超过55000元至80000元的部分35%
7超过80000元的部分45%
(1)若应纳税所得额为f(x),试用分段函数表示1~3级纳税额f(x)的计算公式;
(2)某单位按工资额的19%为其职工缴纳“三险一金”(养老保险8%、医疗保险2%、失业保险1%、住房公积金8%),2014年1月份该单位某职工缴税40.8元,请问该职工该月总收入多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=$\frac{1}{\sqrt{2-x}}$+(x-1)0的定义域是{x|x<2且x≠1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在极坐标系中有如下三个结论:
①点P在曲线C上,则点P的极坐标满足曲线C的极坐标方程;
②tanθ=1与θ=$\frac{π}{4}$表示同一条曲线;  
③ρ=3与ρ=-3表示同一条曲线. 
在这三个结论中正确的是(  )
A.①③B.C.②③D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$\overrightarrow{OB}$=(2,0),$\overrightarrow{OC}$=(1,2),$\overrightarrow{CA}$=(3,1),则$\overrightarrow{OA}$与$\overrightarrow{OB}$夹角的正弦值为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)(0.064)${\;}^{\frac{1}{3}}$-(-$\frac{7}{8}$)0+(25)${\;}^{\frac{2}{5}}$+($\frac{1}{16}$)0.75
(2)$lg500+lg\frac{8}{5}-\frac{1}{2}lg64+50{({lg2+lg5})^2}$.

查看答案和解析>>

同步练习册答案