(本小题满分13分)
已知椭圆
的两焦点在
轴上, 且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形。
(Ⅰ)求椭圆的方程;
(Ⅱ)过点
的动直线
交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点Q,使得以AB为直径的圆恒过点Q ?若存在求出点Q的坐标;若不存在,请说明理由。
(Ⅰ)
.(Ⅱ)存在定点Q,则Q的坐标只可能为
。
【解析】
试题分析:(Ⅰ)由椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形, ![]()
又斜边长为2,即
故
,
椭圆方程为
.
……………(4分)
(Ⅱ)当
与x轴平行时,以AB为直径的圆的方程为
;
当
与y轴平行时,以AB为直径的圆的方程为![]()
,故若存在定点Q,则Q的坐标只可能为
(6分)
下证明
为所求:
若直线
斜率不存在,上述已经证明.设直线
,
,
,
……………………(8分)
![]()
……(10分)
,即以AB为直径的圆恒过点
.
………(13分)
注: 此题直接设
,得到关于
的恒成立问题也可求解.
考点:本题主要考查椭圆标准方程,直线与椭圆的位置关系。
点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求椭圆、标准方程时,主要运用了椭圆的几何性质。(II)小题中,运用平面向量的数量积,“化证为算”,达到证明目的。
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数![]()
.
(1)求函数
的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数
在区间
上的图象.
(3)设0<x<
,且方程
有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为
的函数
是奇函数.
(1)求
的值;(2)判断函数
的单调性;
(3)若对任意的
,不等式恒成立
,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱
的所有棱长都为2,
为
的中点。
(Ⅰ)求证:
∥平面
;
(Ⅱ)求异面直线
与
所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知
为锐角,且
,函数
,数列{
}的首项
.
(1) 求函数
的表达式;
(2)在
中,若
A=2
,
,BC=2,求
的面积
(3) 求数列
的前
项和![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com