精英家教网 > 高中数学 > 题目详情
若实数x,y满足约束条件
2x+y-7≥0
x+2y-5≥0
x≥0,y≥0
,则3x+4y的最大值是(  )
分析:先根据约束条件画出可行域,设z=3x+4y,再利用z的几何意义求最值,只需求出直线z=3x+4y过可行域内的点A时,从而得到z值即可.
解答:解:先根据约束条件
2x+y-7≥0
x+2y-5≥0
x≥0,y≥0
,画出可行域如图阴影部分,
设z=3x+4y,
将最大值转化为y轴上的截距,
当直线z=3x+4y经过
2x+y-7=0
x+2y-5=0
的交点A(3,1)时,z最大,
最大值是:3×3+4×1=13.
故选:A.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若实数x,y满足约束条件
x+2y≥3
2x+y≤3
,且x≥0,则x-y的最大值为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足约束条件
5x+3y≤15
y≤x+1
x-5y≤3
,则z=3x+5y
的最大值为
17
17

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足约束条件
x+1≥0
x-y+1≤0
x+y-2≤0
,则z=4x+y的最大值为
7
2
7
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足约束条件
x+y≥0
y≤x+2
0≤x≤1
,则z=2x-y的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)若实数x、y满足约束条件
x≥0
y≥0
2x+y-24≤0
-3x+y+6≥0
则目标函数z=2x-3y的最小值是(  )

查看答案和解析>>

同步练习册答案