精英家教网 > 高中数学 > 题目详情
如图,在正三棱柱ABC-A1B1C1中,D是BC的中点.
(1)求证:AD⊥DC1
(2)如果E是B1C1的中点,求证:A1E∥平面ADC1
分析:(1)根据直线与平面垂直的判定定理可知只需证AD与平面BCC1B1内两相交直线垂直,而C1C⊥AD,又AD⊥C1D,C1C∩C1D=C1,满足定理条件;即可证明AD⊥平面BCC1B1
(2)通过(1)AD⊥BC,D为BC边上的中点,连接DE,而点E是B1C1的中点,则四边形B1BDE为平行四边形,可证四边形A1ADE为平行四边形,从而A1E∥AD,又A1E?平面ADC1,AD?平面ADC1,根据线面平行的判定定理可知A1E∥平面ADC1
解答:证明:(1)在直三棱柱ABC-A1B1C1中,C1C⊥平面ABC,AD?平面ABC,
∴C1C⊥AD,
又AD⊥C1D,C1C∩C1D=C1
∴AD⊥平面BCC1B1
∵DC1?平面BCC1B1
∴AD⊥DC1;(6分)
(2)由(1)得∴AD⊥BC,
∵在△ABC中,AB=AC,
∴D为BC边上的中点,(9分)
连接DE,∵点E是B1C1的中点,
∴在直三棱柱ABC-A1B1C1中,四边形B1BDE为平行四边形,
∴B1B
.
ED,又B1B
.
A1A,∴ED
.
A1A,∴四边形A1ADE为平行四边形.(12分)
∴A1E∥AD,又A1E?平面ADC1,AD?平面ADC1
∴A1E∥平面ADC1.(14分)
点评:本小题主要考查直线与平面垂直的判定,以及直线与平面平行的判定,考查空间想象能力和推理论证能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在正三棱柱ABC-A1B1C1中,AB=1,若二面角C-AB-C1的大小为60°,则点C到平面C1AB的距离为(  )
A、
3
4
B、
1
2
C、
3
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,若AD与平面AA1CC1所成的角为a,则sina=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正三棱柱ABC-A1B1C1中,D、E、G分别是AB、BB1、AC1的中点,AB=BB1=2.
(Ⅰ)在棱B1C1上是否存在点F使GF∥DE?如果存在,试确定它的位置;如果不存在,请说明理由;
(Ⅱ)求截面DEG与底面ABC所成锐二面角的正切值;
(Ⅲ)求B1到截面DEG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正三棱柱ABC-A1B1C1中,AA1=4,AB=2,M是AC的中点,点N在AA1上,AN=
14

(Ⅰ)求BC1与侧面ACC1A1所成角的大小;
(Ⅱ)求二面角C1-BM-C的正切值;
(Ⅲ)证明MN⊥BC1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)如图,在正三棱柱ABC一DEF中,AB=2,AD=1,P是CF的延长线上一点,过A、B、P三点的平面交FD于M,交EF于N.
(I)求证:MN∥平面CDE:
(II)当平面PAB⊥平面CDE时,求三梭台MNF-ABC的体积.

查看答案和解析>>

同步练习册答案