精英家教网 > 高中数学 > 题目详情
13.已知平行四边形ABCD的三个顶点A(2,-3),B(-2,4),C(-6,-1).
(1)求直线AD与直线CD的方程;
(2)求经过点D且与直线AC垂直的直线方程.

分析 (1)由斜率公式和平行关系分别可得kAD和kCD=kAB,分别可得直线的方程;
(2)联立直线AD和CD的方程可得D的坐标,由斜率公式和垂直关系可得所求直线的斜率,可得直线方程.

解答 解:(1)由题意可得kAD=kBC=$\frac{-1-4}{-6-(-2)}$=$\frac{5}{4}$,
∴直线AD的方程为y-(-3)=$\frac{5}{4}$(x-2),
化为一般式可得5x-4y-22=0;
同理可得kCD=kAB=$\frac{-3-4}{2-(-2)}$=-$\frac{7}{4}$,
∴直线AC的方程为y-(-1)=-$\frac{7}{4}$(x+6),
化为一般式可得7x+4y+46=0;
(2)联立$\left\{\begin{array}{l}{5x-4y-22=0}\\{7x+4y+46=0}\end{array}\right.$可解得$\left\{\begin{array}{l}{x=-2}\\{y=-8}\end{array}\right.$,即D(-2,-8),
由斜率公式可得kAC=$\frac{-3-(-1)}{2-(-6)}$=-$\frac{1}{4}$,
由垂直关系可得所求直线的斜率为k=4,
故直线方程为y+8=4(x+2),
化为一般式可得4x-y=0.

点评 本题考查直线的一般式方程和平行垂直关系,涉及斜率公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}满足a2=2,a6=0,则数列{an}的公差为(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知x2+$\frac{1}{{x}^{2}}$+2k(x+$\frac{1}{x}$)+k2+1=0有正实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点(a,b)与点(2,0)位于直线2x+3y-1=0的同侧,且a>0,b>0,则z=$\frac{4b+1}{4a-1}$的取值范围是(  )
A.(-$\frac{7}{3}$,1)B.($-∞,-\frac{7}{3}$)∪(1,+∞)C.($-∞,-\frac{7}{3}$)∪(0,+∞)D.($-\frac{7}{3}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=x3+x+a,x∈R为奇函数,则a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知偶函数f(x)在[0,+∞)上是增函数,且f(1)=0,解不等式(2x+1)f(x-2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x+2},{x≤1}\\{1},{x>1}\end{array}\right.$,若f(t)=f($\frac{2}{t}$),则实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.小明在玩投石子游戏,第一次走1米放1颗石子,第二次走2米放2颗石子…第n次走n米放2n-1颗石子,当小明一共走了55米时,他投放石子的总数是(  )
A.36B.254C.1023D.512

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知成等比数列的三个数a+8、a+2、a-2分别为等差数列的第1、4、6项,则这个等差数列前n项和的最大值为90.

查看答案和解析>>

同步练习册答案