精英家教网 > 高中数学 > 题目详情
若x>y>z,n∈N*,且恒成立,则n的最大值是(    )

A.2               B.3                   C.4               D.5

C

解析:=(x-y+y-z)2+≥2+2=4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)设x>y>z,n∈R*,且
1
x-y
+
1
y-z
n
x-z
恒成立,求n的最大值.
(2)已知函数f(x)=2x的反函数是f-1(x),若f-1(a)+f-1(b)=4(a,b∈R*),求
1
a
+
4
b
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

A有一只放有x个红球,y个白球,z个黄球的箱子,且x+y+z=6(x,y,z∈N),B有一只放有3个红球,2个白球,1个黄球的箱子,两人各自从自己的箱子中任取一球,规定:当两球同色时A胜,异色时B胜;
(1)用x,y,z表示A胜的概率;
(2)若又规定当A取红、白、黄球而胜的得分分别为1、2、3分,否则得0分,求A得分的期望最大值及此时x,y,z的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

A有一只放有x个红球,y个白球,z个黄球的箱子,且x+y+z=6(x,y,z∈N),B有一只放有3个红球,2个白球,1个黄球的箱子,两人各自从自己的箱子中任取一球,规定:当两球同色时A胜,异色时B胜;
(1)用x,y,z表示A胜的概率;
(2)若又规定当A取红、白、黄球而胜的得分分别为1、2、3分,否则得0分,求A得分的期望最大值及此时x,y,z的值.

查看答案和解析>>

科目:高中数学 来源:2013年北京市海淀区高考数学一模试卷(理科)(解析版) 题型:解答题

设A(xA,yA),B=(xB,yB)为平面直角坐标系上的两点,其中xA,yA,xB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△Y|=3,且|△x|•|△y|≠0,则称点B为点A的“相关点”,记作:B=i(A).已知(x,y)(xy∈Z)为平面上一个定点,平面上点列{Pi}满足:Pi=i(Pi-1),且点Pi的坐标为(xiyi),其中i=1,2,3,…n.
(Ⅰ)请问:点p的“相关点”有几个?判断这些“相关点”是否在同一个圆上,若在同一个圆上,写出圆的方程;若不在同一个圆上,说明理由;
(Ⅱ)求证:若P与Pn重合,n一定为偶数;
(Ⅲ)若p(1,0),且yn=100,记T=,求T的最大值.

查看答案和解析>>

同步练习册答案