精英家教网 > 高中数学 > 题目详情
已知函数
(1)若f-1(mx2+mx+1)的定义域为R,求实数m的取值范围;
(2)当x∈[-1,1]时,求函数y=f2(x)-2af(x)+3的最小值g(a).
(3)是否存在实数m>n>3,使得g(x)的定义域为[n,m],值域为[n2,m2],若存在,求出m、n的值;若不存在,则说明理由.
【答案】分析:(1)先求出的函数反函数,再代入求出f-1(mx2+mx+1)的解析式;再把其定义域为R转化为mx2+mx+1>0恒成立,即可求出实数m的取值范围;
(2)先求出函数y=f2(x)-2af(x)+3的表达式,再结合二次函数在闭区间上的最值求法即可求出g(a)的表达式;
(3)根据(2)的结论知m>n>3,对应g(x)=12-6x,在(3,+∞)上是减函数;求出其最大最小值于条件相结合即可求出m、n之间的关系,进而得到结论.
解答:解:(1)∵(x>0),…(2分)

由题知,mx2+mx+1>0恒成立,
∴10 当m=0时,1>0满足题意;…(3分)
20 当m≠0时,应有
∴实数m的取值范围为0≤m<4.…(5分)
(2)∵x∈[-1,1],∴
y=f2(x)-2af(x)+3=,…(7分)
时,
时,ymin=g(a)=3-a2
当a>3时,ymin=g(a)=12-6a.
.        
(3)∵m>n>3,∴g(x)=12-6x,在(3,+∞)上是减函数.
∵g(x)的定义域为[n,m],值域为[n2,m2],
…(12分)
②-①得:6(m-n)=(m+n)(m-n),
∵m>n>3,∴m+n=6.但这与“m>n>3”矛盾.
∴满足题意的m、n不存在.                 …(14分)
点评:本题考查转化思想以及分类讨论思想的应用,由解题过程可以看出,通过转化把f-1(mx2+mx+1)的定义域为R转化为mx2+mx+1>0恒成立是求出第一问的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年广东省湛江师范附中高三(上)第一周周考数学试卷(理科)(9.9)(解析版) 题型:解答题

已知函数
(1)若f(x)为奇函数,求a的值;
(2)若f(x)在[3,+∞)上恒大于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江师范附中高三(上)第一周周考数学试卷(理科)(9.9)(解析版) 题型:解答题

已知函数
(1)若f(x)为奇函数,求a的值;
(2)若f(x)在[3,+∞)上恒大于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市萧山区三校联考高三(上)期中数学试卷(文科)(解析版) 题型:解答题

已知函数
(1)若f(x)在x=2时取得极值,求a的值;
(2)求f(x)的单调区间;
(3)求证:当x>1时,

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三9月月考文科数学试卷 题型:解答题

(13分)已知函数

(1)若f(x)关于原点对称,求a的值;

(2)在(1)下,解关于x的不等式

 

查看答案和解析>>

同步练习册答案