精英家教网 > 高中数学 > 题目详情

双曲线数学公式的左、右焦点分别为F1、F2,过焦点F2且垂直于x轴的直线与双曲线相交于A、B两点,若数学公式,则双曲线的离心率为________.


分析:因为,所以AF1与BF1互相垂直,结合双曲线的对称性可得:△AF1B是以AB为斜边的等腰直角三角形.由此建立关于a、b、c的等式,化简整理为关于离心率e的方程,解之即得该双曲线的离心率.
解答:根据题意,得右焦点F2的坐标为(c,0)
联解x=c与,得A(c,),B(c,-

∴AF1与BF1互相垂直,△AF1B是以AB为斜边的等腰Rt△
由此可得:|AB|=2|F1F2|,即=2×2c
=2c,可得c2-2ac-a2=0,两边都除以a2,得e2-2e-1=0
解之得:e=(舍负)
故答案为:
点评:本题给出经过双曲线右焦点并且与实轴垂直的弦,与左焦点构成直角三角形,求双曲线的离心率,着重考查了双曲线的标准方程和简单几何性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•天津模拟)如图,椭圆
x
2
 
a
2
 
+
y
2
 
b2
=1(a>b>0)
与一等轴双曲线相交,M是其中一个交点,并且双曲线在左、右顶点分别是该椭圆的左、右焦点F1、F2,双曲线的左、右焦点分别是椭圆左、右顶点,△MF1F2的周长为(4
2
+1
),设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A,B和C,D.
(1)求椭圆和双曲线的标准方程;
(2)设直线PF1、PF2的斜率分别为k1、k2,求证:k1•k2=1;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的左、右焦点分别是,其一条渐近线方程为,点在双曲线上.则·

   A. -12             B.  -2            C.   0          D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

(川卷文理)已知双曲线的左、右焦点分别是,其一条渐近线方程为,点在双曲线上.则·=(   )

   A. -12             B.  -2            C.   0          D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的左、右焦点分别是,其一条渐近线方程为,点在双曲线上.则·

   A. -12             B.  -2            C.   0          D. 4

查看答案和解析>>

科目:高中数学 来源:2010年山东省高三12月月考理科数学卷 题型:填空题

已知双曲线的左、右焦点分别是,其一条渐近线方程为,点在双曲线上.则·         

 

查看答案和解析>>

同步练习册答案