分析 (1)化为分段函数,再解不等式即可,
(2)①)当a≥1②当0<a<1③当a≤0三种情况,画出f(x)=|ax-1|与g(x)=(a-1)x的图象,利用图象确定有无交点.
解答 解:(1)a=$\frac{1}{2}$时,f(x)=|$\frac{1}{2}$x-1|+$\frac{1}{2}$x=$\left\{\begin{array}{l}{x-1,x≥2}\\{1,x<2}\end{array}\right.$,
∵f(x)>1,
∴$\left\{\begin{array}{l}{x-1>1}\\{x≥2}\end{array}\right.$,
解得x>2,
故x的取值范围为(2,+∞),
(2)函数f(x)的图象与x轴没有交点,
①当a≥1时,f(x)=|ax-1|与g(x)=(a-1)x的图象:![]()
两函数的图象恒有交点,
②当0<a<1时,f(x)=|ax-1|与g(x)=(a-1)x的图象:![]()
要使两个图象无交点,斜率满足:a-1≥-a,
∴a≥$\frac{1}{2}$,故$\frac{1}{2}$≤≤a<1
③当a≤0时,f(x)=|ax-1|与g(x)=(a-1)x的图象:![]()
两函数的图象恒有交点,
综上①②③知:$\frac{1}{2}$≤a<1
故答案为:(2,+∞),[$\frac{1}{2}$,1)
点评 本题主要考查函数图象的运用,如果函数的图象能画出,结合图象解题形象而直观,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | c<a<b | C. | a<c<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{3}{4}π$ | D. | $\frac{3}{2}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1] | B. | [1,+∞) | C. | (-∞,0] | D. | [0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com