精英家教网 > 高中数学 > 题目详情
5.若$\frac{cos2θ}{sin(θ+\frac{π}{4})}$=-$\frac{\sqrt{2}}{2}$,则log${\;}_{\sqrt{2}}$(sinθ-cosθ)的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

分析 首先由已知等式求出sinθ-cosθ的值,然后化简对数式.

解答 解:由已知得到$\frac{co{s}^{2}θ-si{n}^{2}θ}{\frac{\sqrt{2}}{2}sinθ+\frac{\sqrt{2}}{2}cosθ}=\sqrt{2}(cosθ-sinθ)$=$-\frac{\sqrt{2}}{2}$,所以sinθ-cosθ=$\frac{1}{2}$,
所以log${\;}_{\sqrt{2}}$(sinθ-cosθ)=log${\;}_{\sqrt{2}}$$\frac{1}{2}$=-2;
故选C.

点评 本题考查了三角函数的化简以及对数式的求值;正确化简三角函数式,求出sinθ-cosθ的值是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.将6位志愿者分成4组,每组至少1人,至多2人分赴第五届亚欧博览会的四个不同展区服务,不同的分配方案有1080种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从2013名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2013人中剔除13人,剩下的2000人再按系统抽样的方法抽取50人,则在2013人中,每人入选的机会(  )
A.不全相等B.均不相等
C.都相等,且为$\frac{1}{40}$D.都相等,且为 $\frac{50}{2013}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\left\{\begin{array}{l}\frac{1}{x},x<1\\{x^2}-1,x≥1\end{array}$,则$f({f({\frac{1}{3}})})$=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知tanα=2,计算:
(1)$\frac{sin(α-3π)+cos(π+α)}{sin(-α)-cos(π+α)}$;
(2)cos2α-2sinαcosα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在正三棱柱ABC-A1B1C1中,AB=2,AAl=3,点D为C1B的中点,点P为AB的中点.
(1)证明DP∥平面ACClAl
(2)求三棱锥C1-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a,b∈R,则“$\frac{1}{a}>\frac{1}{b}$”是“a<b<0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(3x)=xlg9,则f(2)+f(5)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=x2-ln|x|在[-2,2]的图象大致为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案