精英家教网 > 高中数学 > 题目详情
已知向量
m
=(2sinx,2cosx),
n
=(
3
cosx,cosx),f(x)=
m
n
-1

(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标先缩短到原来的
1
2
,把所得到的图象再向左平移
π
6
单位,得到函数y=g(x)的图象,求函数y=g(x)在区间[0,
π
8
]
上的最小值.
分析:(1)利用向量的坐标运算可求得f(x)=
m
n
-1=2sin(2x+
π
6
),从而可求函数f(x)的最小正周期和单调递增区间;
(2)利用三角函数y=Asin(ωx+φ)的图象变换可得y=g(x)的表达式,从而可求得在区间[0,
π
8
]
上的最小值.
解答:解:(1)依题意得,f(x)=
m
n
-1
=
3
sin2x+cos2x+1-1
=2sin(2x+
π
6
),
∴函数f(x)的最小正周期T=
2
=π,
由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
(k∈Z)得:,
kπ-
π
3
≤x≤kπ+
π
6
(k∈Z)
∴f(x)的单调递增区间为[kπ-
π
3
,kπ+
π
6
](k∈Z);
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标先缩短到原来的
1
2
,可得y=2sin(x+
π
6
),把所得到的y=2sin(x+
π
6
)的图象再向左平移
π
6
单位,
即得g(x)=2sin[(x+
π
6
)+
π
6
]=2sin(x+
π
3
);又0≤x≤
π
8

π
3
≤x+
π
3
11π
24

∴g(x)min=2sin
π
3
=
3
点评:本题考查函数y=Asin(ωx+φ)的图象变换,以向量的坐标运算为载体考查三角函数的化简求值,考查正弦函数的性质,是三角中的综合题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(2sinx-cosx,sinx),
n
=(cosx-sinx,0)
,且函数f(x)=(
m
+2
n
)
m.

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)将函数f(x)向左平移
π
4
个单位得到函数g(x),求函数g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(-2sinx,cosx)
n
=(
3
cosx,2cosx)
,函数f(x)=1-
m
n

(1)求f(x)的最小正周期; 
(2)当x∈[0,π]时,求f(x)的单调递增区间;
(3)说明f(x)的图象可以由g(x)=sinx的图象经过怎样的变换而得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(-2sinx,cosx)
n
=(
3
cosx,2cosx)
,函数f(x)=1-
m
n

(1)求f(x)的最小正周期; 
(2)当x∈[0,π]时,求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•香洲区模拟)已知向量
m
=(-2sinx,-1),
n
=(-cosx,cos2x)
,定义f(x)=
m
n

(1)求函数f(x)的表达式,并求其单调增区间;
(2)在锐角△ABC中,角A、B、C对边分别为a、b、c,且f(A)=1,bc=8,求△ABC的面积.

查看答案和解析>>

同步练习册答案