精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,平面四边形为正方形,点在上的射影为点.

(1)求证:平面

(2)在棱上是否存在一点,使得平面.若存在,求出的长;若不存在,请说明理由.

 

【答案】

(1)见解析    (2) .

【解析】(1)由已知得,要证平面,关键是证,由已知易证出,结论得证;(2)假设存在一点,使得平面,再作,得到面面平行,根据面面平行的性质定理得线线平行,把要求的转化为求利用三角形相似,对应线段成比例计算得的值。

(1)

(2)假设棱存在一点,使.过,连,则,它们都与平面相交,,则,可求 即,因此存在点满足题意,

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB中点,过A、N、D三点的平面交PC于M.
(1)求证:DP∥平面ANC;
(2)求证:M是PC中点;
(3)求证:平面PBC⊥平面ADMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为4的菱形,且∠BAD=60°,N是PB的中点,过A,D,N的平面交PC于M,E是AD的中点.
(1)求证:BC⊥平面PEB;
(2)求证:M为PC的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥中,侧面

是正三角形,且与底面垂直,底面是边长为2的菱形,中点,过三点的平面交. 

(1)求证:;   (2)求证:中点;(3)求证:平面⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

如图,在四棱锥中,底面为菱形,的中点。

   (1)点在线段上,

试确定的值,使平面

   (2)在(1)的条件下,若平面

面ABCD,求二面角的大小。

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

如图,在四棱锥中,底面为菱形,的中点。

   (1)点在线段上,

试确定的值,使平面

   (2)在(1)的条件下,若平面

面ABCD,求二面角的大小。

查看答案和解析>>

同步练习册答案