精英家教网 > 高中数学 > 题目详情
设圆心为C1的方程为(x-5)2+(y-3)2=9,圆心为C2的方程为x2+y2-4x+2y-9=0,则两圆的圆心距等于(  )
A、5
B、25
C、10
D、2
5
分析:由圆C1的方程找出圆心C1的坐标,把圆C2的方程为x2+y2-4x+2y-9=0化为标准方程后,找出圆心为C2的坐标,然后利用两点间的距离公式即可求出两圆的圆心距.
解答:解:由圆C1的方程为(x-5)2+(y-3)2=9,将圆C2的方程为x2+y2-4x+2y-9=0化为标准方程得:(x-2)2+(y+1)2=14,
到圆心C1的坐标为(5,3),圆心C2的坐标为(2,-1),
则两圆的圆心距d=
(5-2)2+(3+1)2
=5.
故选A.
点评:此题考查学生会将圆的一般式方程化为标准式方程,灵活运用两点间的距离公式化简求值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设圆C1的方程为(x+2)2+(y-3m-2)2=4m2,直线l的方程为y=x+m+2.
(1)若m=1,求圆C1上的点到直线l距离的最小值;
(2)求C1关于l对称的圆C2的方程;
(3)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•辽宁)选修4-4:坐标系与参数方程
在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos(θ-
π
4
)=2
2

(Ⅰ)求C1与C2交点的极坐标;
(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为
x=t3+a
y=
b
2
t3+1
(t∈R为参数),求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆心为C1的方程为(x-5)2+(y-3)2=9,圆心为C2的方程为x2+y2-4x+2y-9=0,则圆心距等于

(  )

A.5         B.25        C.10              D.

查看答案和解析>>

科目:高中数学 来源:河北省高三下学期第二次考试数学(文) 题型:解答题

(本题满分12分)已知椭圆的离心率为

直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切。

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直

线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;

(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积

的最小值.

 

查看答案和解析>>

同步练习册答案