某电视台举办了“中华好声音”大型歌手选秀活动,过程分为初赛、复赛和决赛,经初赛进入复赛的40名选手被平均分成甲、乙两个班,由组委会聘请两位导师各负责一个班进行声乐培训。下面是根据这40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图:
![]()
赛制规定:参加复赛的40名选手中,获得的支持票数排在前5名的选手可进入决赛,若第5名出现并列,则一起进入决赛;另外,票数不低于95票的选手在决赛时拥有“优先挑战权”。
1、从进入决赛的选手中随机抽出3名,求其中恰有1名拥有“优先挑战权”的概率;
2、电视台决定,复赛票数不低于85票的选手将成为电视台的“签约歌手”,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成为‘签约歌手’与选择的导师有关?
|
|
甲班 |
乙班 |
合计 |
|
签约歌手 |
|
|
|
|
末签约歌手 |
|
|
|
|
合计 |
|
|
|
下面临界值表仅供参考:
|
P(K2≥k) |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
k |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
参考公式:K2=
,其中![]()
(Ⅰ)
.
(Ⅱ)因此在犯错误的概率不超过0.025的前提下认为成为‘签约歌手’与选择的导师有关.
【解析】
试题分析:(Ⅰ)进入决赛的选手共6名,其中拥有“优先挑战权”的选手共3名. 2分
为拥有“优先挑战权”的选手编号为1,2,3,其余3人编号为A,B,C.
被选中3人的编号所有可能的情况共20种,列举如下:
123,12A,12B,12C,13A,13B,13C,1AB,1AC,1BC,
23A,23B,23C,2AB,2AC,2BC,
3AB,3AC,3BC,
ABC, 4分
其中拥有“优先挑战权”的选手恰有1名的情况共9种,如下:
1AB,1AC,1BC,2AB,2AC,2BC,3AB,3AC,3BC,
∴所求概率为
.
6分
(Ⅱ)
列联表:
|
|
甲班 |
乙班 |
合计 |
|
签约歌手 |
3 |
10 |
13 |
|
未签约歌手 |
17 |
10 |
27 |
|
合计 |
20 |
20 |
40 |
9分
![]()
因此在犯错误的概率不超过0.025的前提下认为成为‘签约歌手’与选择的导师有关. 12分
考点:本题主要考查茎叶图,古典概型概率的计算,“卡方检验”。
点评:典型题,统计中的抽样方法,频率直方图,概率计算及分布列问题,是高考必考内容及题型。古典概型概率的计算问题,关键是明确基本事件数,往往借助于“树图法”,做到不重不漏。“卡方检验”问题,往往直接套用公式加以计算,对照“定值”比较,作出判断。
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2012-2013学年福建省高三下学期第二次联考文数学试卷(解析版) 题型:解答题
某电视台2012年举办了“中华好声音”大型歌手选秀活动,过程分为初赛、复赛和决赛,经初赛进入复赛的40名选手被平均分成甲、乙两个班。下面是根据这40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图:
![]()
赛制规定:参加复赛的40名选手中,获得的支持票数排在前5名的选手可进入决赛,若第5名出现并列,则一起进入决赛;另外,票数不低于95票的选手在决赛时拥有“优先挑战权”。
(Ⅰ)分别求出甲、乙两班的大众评审的支持票数的中位数、众数与极差;
从进入决赛的选手中随机抽出3名,求其中恰有1名拥有“优先挑战权”的概率.
查看答案和解析>>
科目:高中数学 来源:不详 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2012-2013学年福建省泉州一中高二(下)期末数学试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com