精英家教网 > 高中数学 > 题目详情
17.已知数列{an}满足:a1=2,an+1=$\left\{\begin{array}{l}{\frac{1}{2}{a}_{n},n为偶数}\\{{a}_{n}+1,n为奇数}\end{array}\right.$,若bn=a2n-1-1.
(Ⅰ)求证:数列{bn}是等比数列;
(Ⅱ)若数列{an}的前n项和为Sn,求S2n

分析 (Ⅰ)利用递推关系、等比数列的定义即可得出.
(Ⅱ)利用分组求和、等比数列的求和公式即可得出.

解答 解:(Ⅰ)证明:${b_{n+1}}={a_{2n+1}}-1=\frac{1}{2}{a_{2n}}-1$=$\frac{1}{2}({a_{2n-1}}+1)-1$=$\frac{1}{2}({a_{2n-1}}-1)=\frac{1}{2}{b_n}$,
故{bn} 为等比数列;
(Ⅱ)由(Ⅰ)知${b_n}=({a_1}-1)•{(\frac{1}{2})^{n-1}}=\frac{1}{{{2^{n-1}}}}$,∴${a_{2n-1}}=\frac{1}{{{2^{n-1}}}}+1$,
又a2n=a2n-1+1,∴${a_{2n-1}}+{a_{2n}}=\frac{1}{{{2^{n-2}}}}+3$,
∴${S_{2n}}=3n+\frac{{2(1-\frac{1}{2^n})}}{{1-\frac{1}{2}}}=3n+4-\frac{1}{{{2^{n-2}}}}$.

点评 本题考查了递推关系、等比数列的定义与求和公式、分组求和,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\frac{2{e}^{x}}{{e}^{x}+1}$,在F(x)=f(x)+1和G(x)=f(x)-1中,G(x)为奇函数,若f(b)=$\frac{3}{2}$,则f(-b)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l过点P(2,4),且与圆O:x2+y2=4相切,则直线l的方程为(  )
A.x=2或3x-4y+10=0B.x=2或x+2y-10=0C.y=4或3x-4y+10=0D.y=4或x+2y-10=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题p:甲的数学成绩不低于100分,命题q:乙的数字成绩低于100分,则p∨(¬q)表示(  )
A.甲、乙两人数学成绩都低于100分
B.甲、乙两人至少有一人数学成绩低于100分
C.甲、乙两人数学成绩都不低于100分
D.甲、乙两人至少有一人数学成绩不低于100分

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a,b,c∈R且c≠0.
 x 1.5 314 27 
 lgx 2a+b a+b a-c+1 b+c a+2b+c 3(c-a) 2(a+b) b-a 3(a+b)
若上表中的对数值恰有两个是错误的,则a的值为(  )
A.lg$\frac{2}{21}$B.$\frac{1}{2}$lg$\frac{3}{14}$C.$\frac{1}{2}$lg$\frac{3}{7}$D.lg$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,∠A=90°,AB=2,AC=4,E,F分别为AB,BC的中点,则$\overrightarrow{CE}•\overrightarrow{AF}$=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=alnx+$\frac{b}{x}$+1,曲线y=f(x)在点(1,2)处切线平行于x轴.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当x>1时,不等式(x-1)f(x)>(x-k)lnx恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,F1、F2是双曲线$\frac{x^2}{9}-\frac{y^2}{b^2}=1(b>0)$的左、右焦点,过F1的直线l与双曲线分别交于点A、B,若△ABF2为等边三角形,则△BF1F2的面积为(  )
A.$8\sqrt{3}$B.$9\sqrt{3}$C.$18\sqrt{3}$D.$27\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,点E、F、G分别是棱SA、SB、SC的中点.求证:
(1)平面EFG∥平面ABC;
(2)BC⊥平面SAB.

查看答案和解析>>

同步练习册答案