精英家教网 > 高中数学 > 题目详情

【题目】已知函数h(x)=ax3﹣1(a∈R),g(x)=lnx,f(x)=h(x)+3xg(x)(e为自然对数的底数).
(I)若f(x)图象过点(1,﹣1),求f(x)的单调区间;
(II)若f(x)在区间( ,e)上有且只有一个极值点,求实数a的取值范围;
(III)函数F(x)=(a﹣ )x3+ x2g(a)﹣h(x)﹣1,当a>e 时,函数F(x)过点A(1,m)的切线至少有2条,求实数m的值.

【答案】解:(Ⅰ)由已知f(x)=h(x)+3xg(x)=ax3﹣1+3xlnx,
又f(x)过点(1,﹣1),所以a=0,
∴f(x)=3xlnx﹣1,且定义域为(0,+∞),
f′(x)=3lnx+3=3(lnx+1),
令f′(x)>0,解得:x> ,令f′(x)<0,解得:0<x<
故f(x)=3xlnx﹣1在(0, )上是减函数,在( ,+∞)上是增函数;
(Ⅱ)函数f(x)=ax3+3xlnx﹣1的定义域为(0,+∞),
f′(x)=3(ax2+lnx+1),
令r(x)=ax2+lnx+1,
则r′(x)=2ax+ =
当a>0时,r′(x)>0在(0,+∞)恒成立,
故f′(x)=3(ax2+lnx+1)在(0,+∞)上是增函数,
而f′( )= >0,
故当x∈( ,e)时,f′(x)>0恒成立,
故f(x)在区间( ,e)上单调递增,
故f(x)在区间( ,e)上没有极值点;
当a=0时,由(Ⅰ)知,f(x)在区间( ,e)上没有极值点;
当a<0时,令 =0,解得,x=
故r(x)=ax2+lnx+1在(0, )上是增函数,在( ,+∞)上是减函数,
①当r(e)r( )<0,即﹣ <a<0时,
r(x)在( ,e)上有且只有一个零点,且在该零点两侧异号,
②令r( )=0,得 =0,不成立;
③令r(e)=0,得a=﹣ ,所以 ∈( ,e),
而r( )=r( )= +ln >0,又r( )<0,
所以r(x)在( ,e)上有且只有一个零点,且在该零点两侧异号,
综上所述,实数a的取值范围是[﹣ ,0).
(Ⅲ)函数F(x)=(a﹣ )x3+ x2g(a)﹣h(x)﹣1,
由函数F(x)过点A(1,m)的切线,
所以m= x03﹣(1+ lna)x02+x0lna,(*)
②据题意,原命题等价于关于x0的方程(*)至少有2个不同的解.
设φ(x)= x3﹣(1+ lna)x2+xlna,
φ′(x)=2x2﹣(2+lna)x+lna=(x﹣1)(2x﹣lna),
因为a> ,所以 lna> >1,
当x∈(﹣∞,1)和( lna,+∞)时,φ′(x)>0,φ(x)为增函数;
当x∈(1, lna)时,φ′(x)<0,φ(x)为减函数;
所以φ(x)的极大值为φ(1)= lna﹣
φ(x)的极小值为φ( lna)=﹣ ln3a+ ln2a,
设lna=t,t>
则原命题等价于 对t> 恒成立,
所以由m≤ t﹣ 对t> 恒成立,得m≤ (1)
记s(t)=﹣ t3+ t2 , s′(t)=﹣ t2+ t= t(1﹣ t),
所以t> 时,s(t)的最大值为s(4)= ,由m≥﹣ t3+ t2对t> 恒成立,得m≥ . (2)
由(1)(2)得,m=
综上,当a> ,实数m的值为 时,函数F(x)过点A(1,m)的切线至少有2条
【解析】(Ⅰ)求出f(x)的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)求出f(x)的导数,通过讨论a的范围求出函数的单调区间,结合已知条件求出a的范围即可;(Ⅲ)求出函数的导数,求出B处的切线方程,根据函数的单调性求出a的范围即可.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减),还要掌握函数的极值与导数(求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =(2sin ,2sin ), =(cos ,﹣ sin ). (Ⅰ)求函数f(x)= + 的最小正周期;
(Ⅱ)若β= ,g(β)=tan2α,α≠ + 且α≠ +kπ(k∈Z),数列{an}满足a1= ,an+12= ang(an)(n≤16且n∈N*),令bn= ,求数列{bn}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三共有900名学生,高三模拟考之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,制成如下的频率分布表:

组号

第一组

第二组

第二组

第四组

分组

[70,80)

[80,90)

[90,100)

[100,110)

频数

6

4

22

20

频率

0.06

0.04

0.22

0.20

组号

第五组

第六组

第七组

第八组

分组

[110,120)

[120,130)

[130,140)

[140,150]

频数

18

a

10

5

频率

b

0.15

0.10

0.05


(1)若频数的总和为c,试求a,b,c的值;
(2)为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生,在这6名学生中又再随机抽取2名与心理老师面谈,令第七组被抽中的学生数为随机变量ξ,求随机变量ξ的分布列和数学期望;
(3)估计该校本次考试的数学平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (其中e是自然对数的底数,a∈R). (Ⅰ)若曲线f(x)在x=l处的切线与x轴不平行,求a的值;
(Ⅱ)若函数f(x)在区间(0,1]上是单调函数,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:函数y=log0.5(x2+2x+a)的值域R,命题q:函数y=x2a5在(0,+∞)上是减函数.若p或q为真命题,p且q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是(

A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(﹣2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(﹣2)
D.函数f(x)有极大值f(﹣2)和极小值f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到 函数的图象,只需把y=3sinx上所有的点(
A.先把横坐标缩短到原来的 倍,然后向左平移 个单位
B.先把横坐标缩短到原来的2倍,然后向左平移 个单位
C.先把横坐标缩短到原来的2倍,然后向左右移 个单位
D.先把横坐标缩短到原来的 倍,然后向右平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相同的单位长度,已知直线I的参数方程为 (t为参数),圆C的极坐标方程为ρ=2,点P关于极点对称的点P'QUOTE p的极坐标为
(1)写出圆C的直角坐标方程及点P的极坐标;
(2)设直线I与圆C相交于两点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:
根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的个数是(
①首次服用该药物1单位约10分钟后,药物发挥治疗作用
②每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒
③每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
④首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒.
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案