精英家教网 > 高中数学 > 题目详情

已知各项均为正数的等比数列{an}满足a2•a4=a6数学公式
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设数列{an}的前n项和为Sn,前n项积为Tn,求所有的正整数k,使得对任意的n∈N*,不等式Sn+K+数学公式恒成立.

解:(Ⅰ) 设等比数列{an}的首项为a1>0,公比为q>0,
∵a2•a4=a6

解得

(Ⅱ)∵
==
=
若存在正整数k,使得不等式对任意的n∈N*都成立,
+<1,即
∵只有当n=1时,取得最小值2,满足题意.
∴k<2,正整数k只有取k=1.
分析:(Ⅰ)利用等比数列的通项公式及已知条件即可得出;
(Ⅱ)利用等比数列、等差数列的前n项和公式、指数幂的运算性质、二次函数的单调性即可得出.
点评:本题主要考查等比数列的通项公式及等差、等比数列的求和公式、不等式及其恒成立问题等基础知识,同时考查运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源:2011届本溪县高二暑期补课阶段考试数学卷 题型:解答题

(本题满分12分)已知各项均为正数的数列
的等比中项。
(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源:2013-2014学年河北省石家庄高三上学期调研考试文科数学试卷(解析版) 题型:选择题

已知各项均为正数的等比数列中,的等比中项为,则的最小值为(    )

A.16    B.8    C.    D.4

 

查看答案和解析>>

科目:高中数学 来源:2013届辽宁朝阳柳城高中高三上第三次月考理科数学试卷(解析版) 题型:解答题

 已知各项均为正数的数列

的等比中项。

(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn

 

查看答案和解析>>

科目:高中数学 来源:2013届辽宁朝阳柳城高中高三上第三次月考文科数学试卷(解析版) 题型:解答题

(12分)已知各项均为正数的数列

的等比中项。

(1)求证:数列是等差数列;

(2)若的前n项和为Tn,求Tn

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年本溪县高二暑期补课阶段考试数学卷 题型:解答题

(本题满分12分)已知各项均为正数的数列

的等比中项。

(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn

 

查看答案和解析>>

同步练习册答案