精英家教网 > 高中数学 > 题目详情
已知命题p:“关于x的方程x2-ax+a=0无实根”和命题q:“函数f(x)=x2-ax+a在区间[-1,+∞)上单调.如果命题p∨q是假命题,那么,实数a的取值范围是(  )
A、(0,4)B、(-∞,2]∪(0,4)C、(-2,0]∪[4,+∞)D、[-2,0)∪(4,+∞)
分析:由已知,p,q均为假命题,分别求出使,p,q均为假命题得a的取值范围,再求公共部分即可.
解答:解:∵p∨q是假命题,∴p假或q假.
命题p:“关于x的方程x2-ax+a=0无实根”
即△=a2-4a<0,
0<a<4.
若p假,则a≤0或a≥4①
命题q:“函数f(x)=x2-ax+a在区间[-1,+∞)上单调
即对称轴方程x=
a
2
≤-1,a≤-2,
若q假,则a>-2②
由①②可得a的取值范围是(-2,0]∪[4,+∞)
故选C
点评:本题考查复合命题真假的判断,考查分析解决,转化、逻辑思维能力.将复合命题真假转化为简单命题的真假是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2+mx+
1
2
=0
有两个不等的负根;命题q:函数f(x)=lg[(1-
1
m
)x2+2(m-1)x+m]
的定义域为R.
(1)若命题p、q都是真命题时m的取值范围分别是集合A和集合B,求集合A和集合B;
(2)若命题“(?p)∨(?q)”是假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2+mx+a=0(a>0)有两个不相等的实根,命题q:关于x的方程4x2+4(m-2)x+1=0无实根,若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2-3x+a=0有两不等实根;命题q:关于x的不等式x2+ax+a>0的解集为R.
(1)若p为真命题且q为假命题,试求a的取值范围;
(2)若“p或q”为真,“p且q”为假,则a的取值范围又是怎样的?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的不等式x2-2x-a>0解集为R;命题q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果“p且q”为假命题,“p或q”为真命题,则实数a的取值范围为
[-1,1)∪(
5
2
,+∞)
[-1,1)∪(
5
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的不等式x2+2ax+4>0对?x∈R恒成立;命题q:函数y=-(4-2a)x是R上的减函数.若“p∨q”为真命题,“p∧q”为假命题,则实数a的取值范围是
[
3
2
,2)∪(-∞,-2]
[
3
2
,2)∪(-∞,-2]

查看答案和解析>>

同步练习册答案