精英家教网 > 高中数学 > 题目详情
19.求函数y=(log2$\frac{x}{2}$)(log2$\frac{x}{4}$)的值域,其中x满足-3≤log${\;}_{\frac{1}{2}}$x≤-$\frac{1}{2}$.

分析 利用换元法将函数转化为一元二次函数即可得到结论.

解答 解:∵-3≤log${\;}_{\frac{1}{2}}$x≤-$\frac{1}{2}$.
∴$\frac{1}{2}$≤log2x≤3,
设log2x=t,则$\frac{1}{2}$≤t≤3,
∵y=(log2$\frac{x}{2}$)(log2$\frac{x}{4}$)=(log2x-1)(log2x-2),
∴f(t)=(t-1)(t-2)=t2-3t+2=(t-$\frac{3}{2}$)2-$\frac{1}{4}$,
∴f(t)在[$\frac{1}{2}$,$\frac{3}{2}$]上单调递减,在($\frac{3}{2}$,3]上单调递增,
∴f(t)min=-$\frac{1}{4}$,f(t)max=f(3)=9-9+2=2,
∴-$\frac{1}{4}$≤f(t)≤2,
∴函数y=(log2$\frac{x}{2}$)(log2$\frac{x}{4}$)的值域为[-$\frac{1}{4}$,2].

点评 本题主要考查函数值域的计算,利用换元法转化为二次函数是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设集合M={x|-1≤x≤2},N={x|x-k≤0},若M∪N=N,则实数k的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)=-x2+ax+4在区间(-∞,1]上递增,在[1,+∞)递减.
(1)求a的值;
(2)求g(x)=a${\;}^{-{x}^{2}-2x}$的值域;
(3)解关于x的不等式:loga(-2x+3)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知x${\;}^{\frac{1}{2}}$+x-${\;}^{\frac{1}{2}}$=3,求$\frac{{x}^{2}+{x}^{-2}-2}{x+{x}^{-1}-3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{x-3}$-$\frac{1}{\sqrt{7-x}}$的定义域为集合A,B={x|0≤x-1<8},C={x∈R|x<a或x>a+1}.
(1)求∁RA∩B
(2)若A∪C=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设l是直线,α,β是两个不同的平面,则下列判断正确的是(  )
A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若α⊥β,l⊥α,则l⊥βD.若l⊥α,l⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)是定义在R上的函数,且对任意x,y都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,且f(1)=$-\frac{2}{3}$.
(1)证明f(x)在(-∞,+∞)上的单调性.
(2)求f(x)在[-3,3]上的最大值和最小值.
(3)当x∈[-2,6]时,解不等式f(x2-3)>f(x)-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\frac{1-i}{{{{({1+i})}^2}}}$=(  )
A.$\frac{1}{2}$+$\frac{i}{2}$B.1+$\frac{i}{2}$C.-$\frac{1}{2}$-$\frac{i}{2}$D.1-$\frac{i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若f(x)=ex-ae-x为奇函数,则$f(x-1)<e-\frac{1}{e}$的解集为(  )
A.(-∞,2)B.(一∞,1)C.(2,+∞)D.(1,+∞)

查看答案和解析>>

同步练习册答案