精英家教网 > 高中数学 > 题目详情
设A,B分别为椭圆的左、右顶点,椭圆的长轴长为4,且点在该椭圆上,
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为直线x=4上不同于点(4,0)的任意一点,若直线AP与椭圆相交于异于A的点M,证明:△MBP为钝角三角形。
(Ⅰ)解:由题意:
所求椭圆方程为
又点在椭圆上,可得
所求椭圆方程为
(Ⅱ)证明:由(Ⅰ)知:

则直线PA的方程为:

因为直线PA与椭圆相交于异于A的点M,
所以

所以
从而
所以
又M,B,P三点不共线,
所以∠MBP为钝角,
所以△MBP为钝角三角形。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•天津)设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F,离心率为
3
3
,过点F且与x轴垂直的直线被椭圆截得的线段长为
4
3
3

(Ⅰ)求椭圆的方程;
(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若
AC
DB
+
AD
CB
=8,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(14分)设A、B分别为椭圆的左、右顶点,()为椭圆上一点,椭圆的长半轴的长等于焦距.

(Ⅰ)求椭圆的方程;

(Ⅱ)设,若直线AP,BP分别与椭圆相交于异于A、B的点M、N,证明在以MN为直径的圆内.

查看答案和解析>>

科目:高中数学 来源: 题型:

(14分)设A、B分别为椭圆的左、右顶点,()为椭圆上一点,椭圆的长半轴的长等于焦距.

  (Ⅰ)求椭圆的方程;

  (Ⅱ)设,若直线AP,BP分别与椭圆相交于异于A、B的点M、N,

求证:为钝角.

查看答案和解析>>

科目:高中数学 来源:2010年北京市重点中学高考数学预测试卷(文科)(解析版) 题型:解答题

设A,B分别为椭圆的左、右顶点,椭圆长半轴的长等于焦距,且x=4为它的右准线.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为右准线上不同于点(4,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,证明点B在以MN为直径的圆内.
(此题不要求在答题卡上画图)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市东城区高三上学期期末理科数学卷 题型:解答题

设A、B分别为椭圆的左、右顶点,椭圆的长轴长为4,且点在该椭圆上。

(I)求椭圆的方程;

(II)设P为直线x=4上不同于点(4,0)的任意一点,若直线AP与椭圆相交于A的点

M,证明:为锐角三角形

 

查看答案和解析>>

同步练习册答案