精英家教网 > 高中数学 > 题目详情

如图,四棱柱ABCD-A1B1C1D1的底面边长和侧棱长均为1,∠BAD=∠BAA1=∠DAA1=60°,O1为A1C1中点.
(1)求证:AO1∥平面C1BD;
(2)求证:平面ACC1A1⊥平面ABCD.

证明:(1)连接AC、BD交于O点,连接C1O.…(2分)
∵C1C∥A1A,∴四边形ACC1A1为平行四边形.
又O1,O分别为A1C1,AC的中点,∴C1O∥AO1.…(4分)
∵C1O?平面C1BD,AO1?平面C1BD,∴AO1∥平面C1BD.…(7分)
(2)连接A1B,A1D,A1O.
∵A1A=AB=AD,又∠A1AB=∠A1AD,△A1AB≌△A1AD
∴A1B=A1D.∵O为BD中点,∴BD⊥A1O.…(9分)
又底面ABCD为菱形,∴BD⊥AC…(12分)
∵AC∩A1O=O.∴BD⊥平面ACC1A1
∵BD?平面ABCD∴平面ACC1A1⊥平面ABCD.…(14分)
分析:(1)要证线面平行,只需证此直线平行于平面内的任一条直线即可;
(2)要证平面ACC1A1⊥平面ABCD,只需证平面ABCD内的一条直线BD与面ACC1A1的两条相交直线垂直即可.
点评:本题考查的知识点是线面平行与面面垂直,常用的处理方法是用它们的判定定理,此类题目为立体几何中的常考必考题,一定要切实掌握好.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2.
(Ⅰ)求证:C1D∥平面ABB1A1
(Ⅱ)求直线BD1与平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D-A1C1-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底面边长均为2a,且∠A1AD=∠A1AB=60°,则侧棱AA1和截面B1D1DB的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱A1A=2,
(Ⅰ)证明:AC⊥A1B;
(Ⅱ)若棱AA1上存在一点P,使得
AP
PA1
,当二面角A-B1C1-P的大小为300时,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泉州模拟)如图,四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD.
(Ⅰ)从下列①②③三个条件中选择一个做为AC⊥BD1的充分条件,并给予证明;
①AB⊥BC,②AC⊥BD;③ABCD是平行四边形.
(Ⅱ)设四棱柱ABCD-A1B1C1D1的所有棱长都为1,且∠BAD为锐角,求平面BDD1与平面BC1D1所成锐二面角θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,
AA1=AB=2,E为棱AA1的中点.
(Ⅰ)证明B1C1⊥CE;
(Ⅱ)求二面角B1-CE-C1的正弦值.
(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为
2
6
,求线段AM的长.

查看答案和解析>>

同步练习册答案