精英家教网 > 高中数学 > 题目详情
(2012•佛山二模)设等差数列{an}的前n项和是Sn,且a1=10,a2=9,那么下列不等式中不成立的是(  )
分析:由等差数列{an}的前n项和是Sn,a1=10,a2=9,得d=-1,由此入手,利用等差数列的通项公式和前n项和公式能够得到正确结果.
解答:解:∵等差数列{an}的前n项和是Sn,a1=10,a2=9,
∴d=-1,
a10+a11=a1+9d+a1+10d=1>0,
S21=21a1+
21×20
2
d
=0,
a11+a12=a1+10d+a1+11d=-1<0,
由an=10+(n-1)×(-1)=11-n≥0,
得n≤11,∴a11=0,
故n=10或n=11时,Sn最大.
故选B.
点评:本题考查等差数列的通项公式和前n项和公式的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•佛山二模)已知函数fM(x)的定义域为实数集R,满足fM(x)=
1,x∈M
0,x∉M
(M是R的非空真子集),在R上有两个非空真子集A,B,且A∩B=∅,则F(x)=
fA∪B(x)+1
fA(x)+fB(x)+1
的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
PM2.5日均浓度 0~35 35~75 75~115 115~150 150~250 >250
空气质量级别 一级 二级 三级 四级 五级 六级
空气质量类别 轻度污染 中度污染 重度污染 严重污染
某市2012年3月8日-4月7日(30天)对空气质量指数PM2.5进行监测,获得数据后得到如条形图:
(Ⅰ)估计该城市一个月内空气质量类别为良的概率;
(Ⅱ)在上述30个监测数据中任取2个,设X为空气质量类别为优的天数,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)如图所示为函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象,其中A,B两点之间的距离为5,那么f(-1)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)若logmn=-1,则m+3n的最小值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)函数y=f(x)的图象在点M(1,f(1))处的切线方程为y=ex-e,则f′(1)=
e
e

查看答案和解析>>

同步练习册答案